Location: Bowdoin / Mary Lou Zeeman

Mathematics

Mary Lou Zeeman

R. Wells Johnson Professor of Mathematics

On leave of absence for the 2013-14 academic year.

Contact Information

mlzeeman@bowdoin.edu
207-725-3575
Mathematics
103 Searles Science Building


Spring 2013

  • Advanced Topics in Modeling (ES 328)
  • Advanced Topics in Modeling (ES 328L1)


Mary Lou Zeeman: Bowdoin College: Mathematics

Education

  • B.A. & M.A. University of Oxford, UK
  • Ph.D. University of California, Berkeley

Research Interests

  • Geometric dynamical systems, mathematical biology, population dynamics, neuroendocrinology and hormone oscillations, hypothalamus-pituitary interactions, climate modeling and sustainability




Constant proportion harvest policies: dynamic implications in the Pacific halibut and Atlantic cod fisheries.
A.-A. Yakubu, N. Li, J.M. Conrad and M.L. Zeeman
Mathematical Biosciences.
232 (2011) 66–77

Pituitary network connectivity as a mechanism for the luteinising hormone surge.
D. Lyles, J.H. Tien, D.P. McCobb and M.L. Zeeman
J. Neuroendocrinology
. 22 (2010) 1267-1278.

Social stress alters expression of BK potassium channel subunits in mouse adrenal medulla and pituitary glands.
O. Chatterjee, L.A. Taylor, S. Ahmed, S. Nagaraj, J.J. Hall, S.M. Finckbeiner, P.S. Chan, N. Suda, J.T. King, M.L. Zeeman and D.P. McCobb
J. Neuroendocrinology
. 21 (2009) 167-76.

β2 and β4 Subunits of BK Channels Confer Differential Sensitivity to Acute Modulation by Steroid Hormones.
J. T. King, P. Lovell, M. Rishniw, M. I. Kotlikoff, M.L. Zeeman and D. P. McCobb
J. Neurophysiology.
95 (2006) 2878 – 2888.

A potential role of modulating inosotol 1,4,5-triphosphate receptor desensitization and recovery rates in regulating ovulation
J. Tien, D. Lyles and M. L. Zeeman
Journal of Theoretical Biology
232 (2005) 105-117

Disease induced oscillations between two competing species
P. van den Driessche and  M. L. Zeeman
SIAM Journal on Applied Dynamical Systems
3 (2005)  601-619

Resonance in the menstrual cycle: a new model of the LH surge

M. L. Zeeman, W. Weckesser and D. Gokhman
Reproductive Biomedicine Online
7 (2003) 295-300

From local to global behavior in competitive Lotka-Volterra systems
E. C. Zeeman and M. L. Zeeman
Trans. Amer. Math. Soc.
355 (2003) 713-734

An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex.
E. C. Zeeman and M.L. Zeeman
Nonlinearity. 
15 (2002) 2019-2032.

Bounding the number of cycles of O.D.E.’s in R.
M. Farkas, P. van den Driessche and M.L. Zeeman
Proceedings of the American Mathematical Society.
129 (2001) 443-449

Three-dimensional competitive Lotka-Volterra systems with no periodic orbits
P. van den Driessche and M. L. Zeeman
SIAM J. Appl. Math.
58 (1998) 227-234

A bridge between the Bendixson-Dulac criterion in R2 and Liapunov functions in Rn
J. Pace and M. L. Zeeman
Canadian Applied Mathematics Quarterly 6 (1998) 189--193.

On directed periodic orbits in three-dimensional competitive Lotka-Volterra systems.
M.L. Zeeman
Proc Int’l Conf DEs & Applications to Biology & to Industry.
World Scientific, Singapore, (1996) 563–572

Extinction in nonautonomous competitive Lotka-Volterra systems.
F. Montes de Oca and M.L. Zeeman
Proceedings of the American Mathematical Society.
124 (1996) 3677–3687.

Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems
F. Montes de Oca and M. L. Zeeman
J. Math. Anal. Appl. 192 (1995) 360-370
link will open a PDF - Portable Document Format | J. Math. Anal. Appl.

Extinction in competitive Lotka-Volterra systems.
M.L. Zeeman
Proceedings of the American Mathematical Society.
123 (1995) 87–96.

Geometric methods in population dynamics.
M.L. Zeeman
Proc. Symposium Comparison Methods & Stability Theory.
Marcel Dekker, Inc., NY.  (1994) 339–347.

On the convexity of carrying simplices in competitive Lotka-Volterra systems.
E. C. Zeeman, M.L. Zeeman
Differential Equations, Dynamical Systems & Control Science.
Marcel Dekker, Inc., NY.  (1993) 353-364.

Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems
M. L. Zeeman
Dynamics Stability Systems
8 (1993) 189-217

Ruthenium Dioxide Hydrate, is it a Redox Catalyst?,
A. Mills and M. L. Zeeman
J. Chemical Society, Chemical Communications,
1981, 948-950.