Mary Lou Zeeman

R. Wells Johnson Professor of Mathematics

Mary Lou Zeeman is smiling

Contact Information

mlzeeman@bowdoin.edu
207-725-3575
Mathematics

Searles Science Building - 103


Teaching this semester

MATH 1600. Differential Calculus

Mary Lou Zeeman
Functions, including the trigonometric, exponential, and logarithmic functions; the derivative and the rules for differentiation; the anti-derivative; applications of the derivative and the anti-derivative. Four to five hours of class meetings and computer laboratory sessions per week, on average. Open to students who have taken at least three years of mathematics in secondary school.

MATH 2208. Ordinary Differential Equations

Mary Lou Zeeman
A study of some of the ordinary differential equations that model a variety of systems in the physical, natural and social sciences. Classical methods for solving differential equations with an emphasis on modern, qualitative techniques for studying the behavior of solutions to differential equations. Applications to the analysis of a broad set of topics, including population dynamics, oscillators and economic markets. Computer software is used as an important tool, but no prior programming background is assumed.

Education

  • B.A. & M.A. University of Oxford, UK
  • Ph.D. University of California, Berkeley

Research Interests

  • Geometric dynamical systems, mathematical biology, population dynamics, neuroendocrinology and hormone oscillations, climate modeling, sustainability and resilience.


 Links

Lectures 

Panel discussions and Interviews 

News

Mathematics and Climate Research Network
State of the Planet
Mathematics of Planet Earth
Math 2013

Mary Lou co-led the MPE 2013 Initiative, and co-founded the SIAM activity group on MPE
mpe2013.org
siam.org/activity/mpe

Computational Sustainability Network
3 Areas
Lotka-Volterra Systems
Lotka-Volterra models
Mathematical Neuroendocrinology 
Hypothalmus
Sir Christopher Zeeman Archive
Sir Christopher Zeeman 1925-2016

Selected Papers

Mathematics, Sustainability, and a Bridge to Decision Support. 
Mary Lou Zeeman
Guest Editorial, The College Mathematics Journal
Vol. 44, No. 5 (November 2013), pp. 346-349
http://www.jstor.org/stable/10.4169/college.math.j.44.5.346#

Constant proportion harvest policies: dynamic implications in the Pacific halibut and Atlantic cod fisheries.
A.-A. Yakubu, N. Li, J.M. Conrad and M.L. Zeeman
Mathematical Biosciences.
 232 (2011) 66–77

Pituitary network connectivity as a mechanism for the luteinising hormone surge.
D. Lyles, J.H. Tien, D.P. McCobb and M.L. Zeeman
J. Neuroendocrinology
. 22 (2010) 1267-1278.

Social stress alters expression of BK potassium channel subunits in mouse adrenal medulla and pituitary glands.
O. Chatterjee, L.A. Taylor, S. Ahmed, S. Nagaraj, J.J. Hall, S.M. Finckbeiner, P.S. Chan, N. Suda, J.T. King, M.L. Zeeman and D.P. McCobb
J. Neuroendocrinology
. 21 (2009) 167-76.

β2 and β4 Subunits of BK Channels Confer Differential Sensitivity to Acute Modulation by Steroid Hormones.
J. T. King, P. Lovell, M. Rishniw, M. I. Kotlikoff, M.L. Zeeman and D. P. McCobb
J. Neurophysiology.
 95 (2006) 2878 – 2888.

A potential role of modulating inosotol 1,4,5-triphosphate receptor desensitization and recovery rates in regulating ovulation
J. Tien, D. Lyles and M. L. Zeeman
Journal of Theoretical Biology
 232 (2005) 105-117

Disease induced oscillations between two competing species
P. van den Driessche and  M. L. Zeeman
SIAM Journal on Applied Dynamical Systems
 3 (2005)  601-619

Resonance in the menstrual cycle: a new model of the LH surge

M. L. Zeeman, W. Weckesser and D. Gokhman
Reproductive Biomedicine Online
 7 (2003) 295-300

From local to global behavior in competitive Lotka-Volterra systems
E. C. Zeeman and M. L. Zeeman
Trans. Amer. Math. Soc.
 355 (2003) 713-734

An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex.
E. C. Zeeman and M.L. Zeeman
Nonlinearity. 
 15 (2002) 2019-2032.

Bounding the number of cycles of O.D.E.’s in R.
M. Farkas, P. van den Driessche and M.L. Zeeman
Proceedings of the American Mathematical Society.
 129 (2001) 443-449

Three-dimensional competitive Lotka-Volterra systems with no periodic orbits
P. van den Driessche and M. L. Zeeman
SIAM J. Appl. Math.
 58 (1998) 227-234

A bridge between the Bendixson-Dulac criterion in R2 and Liapunov functions in Rn
J. Pace and M. L. Zeeman
Canadian Applied Mathematics Quarterly 6 (1998) 189--193.

On directed periodic orbits in three-dimensional competitive Lotka-Volterra systems.
M.L. Zeeman
Proc Int’l Conf DEs & Applications to Biology & to Industry.
 World Scientific, Singapore, (1996) 563–572

Extinction in nonautonomous competitive Lotka-Volterra systems.
F. Montes de Oca and M.L. Zeeman
Proceedings of the American Mathematical Society.
 124 (1996) 3677–3687.

Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems
F. Montes de Oca and M. L. Zeeman
J. Math. Anal. Appl. 192 (1995) 360-370
link will open a PDF - Portable Document Format | J. Math. Anal. Appl.

Extinction in competitive Lotka-Volterra systems.
M.L. Zeeman
Proceedings of the American Mathematical Society.
 123 (1995) 87–96.

Geometric methods in population dynamics.
M.L. Zeeman
Proc. Symposium Comparison Methods & Stability Theory.
 Marcel Dekker, Inc., NY.  (1994) 339–347.

On the convexity of carrying simplices in competitive Lotka-Volterra systems.
E. C. Zeeman, M.L. Zeeman
Differential Equations, Dynamical Systems & Control Science.
 Marcel Dekker, Inc., NY.  (1993) 353-364.

Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems
M. L. Zeeman
Dynamics Stability Systems
 8 (1993) 189-217

Ruthenium Dioxide Hydrate, is it a Redox Catalyst?,
A. Mills and M. L. Zeeman 
J. Chemical Society, Chemical Communications,
 1981, 948-950.