R. Wells Johnson Professor of Mathematics
mlzeeman@bowdoin.edu
2077253575
Mathematics
103 Searles Science Building




Constant proportion harvest policies: dynamic implications in the Pacific halibut and Atlantic cod fisheries.
A.A. Yakubu, N. Li, J.M. Conrad and M.L. Zeeman
Mathematical Biosciences. 232 (2011) 66–77
Pituitary network connectivity as a mechanism for the luteinising hormone surge.
D. Lyles, J.H. Tien, D.P. McCobb and M.L. Zeeman
J. Neuroendocrinology. 22 (2010) 12671278.
Social stress alters expression of BK potassium channel subunits in mouse adrenal medulla and pituitary glands.
O. Chatterjee, L.A. Taylor, S. Ahmed, S. Nagaraj, J.J. Hall, S.M. Finckbeiner, P.S. Chan, N. Suda, J.T. King, M.L. Zeeman and D.P. McCobb
J. Neuroendocrinology. 21 (2009) 16776.
β_{2} and β_{4} Subunits of BK Channels Confer Differential Sensitivity to Acute Modulation by Steroid Hormones.
J. T. King, P. Lovell, M. Rishniw, M. I. Kotlikoff, M.L. Zeeman and D. P. McCobb
J. Neurophysiology. 95 (2006) 2878 – 2888.
A potential role of modulating inosotol 1,4,5triphosphate receptor desensitization and recovery rates in regulating ovulation
J. Tien, D. Lyles and M. L. Zeeman
Journal of Theoretical Biology 232 (2005) 105117
Disease induced oscillations between two competing species
P. van den Driessche and M. L. Zeeman
SIAM Journal on Applied Dynamical Systems 3 (2005) 601619
Resonance in the menstrual cycle: a new model of the LH surge
M. L. Zeeman, W. Weckesser and D. Gokhman
Reproductive Biomedicine Online 7 (2003) 295300
From local to global behavior in competitive LotkaVolterra systems
E. C. Zeeman and M. L. Zeeman
Trans. Amer. Math. Soc. 355 (2003) 713734
An ndimensional competitive LotkaVolterra system is generically determined by the edges of its carrying simplex.
E. C. Zeeman and M.L. Zeeman
Nonlinearity. 15 (2002) 20192032.
Bounding the number of cycles of O.D.E.’s in R.
M. Farkas, P. van den Driessche and M.L. Zeeman
Proceedings of the American Mathematical Society. 129 (2001) 443449
Threedimensional competitive LotkaVolterra systems with no periodic orbits
P. van den Driessche and M. L. Zeeman
SIAM J. Appl. Math. 58 (1998) 227234
A bridge between the BendixsonDulac criterion in R^{2} and Liapunov functions in R^{n}
J. Pace and M. L. Zeeman
Canadian Applied Mathematics Quarterly 6 (1998) 189193.
On directed periodic orbits in threedimensional competitive LotkaVolterra systems.
M.L. Zeeman
Proc Int’l Conf DEs & Applications to Biology & to Industry. World Scientific, Singapore, (1996) 563–572
Extinction in nonautonomous competitive LotkaVolterra systems.
F. Montes de Oca and M.L. Zeeman
Proceedings of the American Mathematical Society. 124 (1996) 3677–3687.
Balancing survival and extinction in nonautonomous competitive LotkaVolterra systems
F. Montes de Oca and M. L. Zeeman
J. Math. Anal. Appl. 192 (1995) 360370
 J. Math. Anal. Appl.
Extinction in competitive LotkaVolterra systems.
M.L. Zeeman
Proceedings of the American Mathematical Society. 123 (1995) 87–96.
Geometric methods in population dynamics.
M.L. Zeeman
Proc. Symposium Comparison Methods & Stability Theory. Marcel Dekker, Inc., NY. (1994) 339–347.
On the convexity of carrying simplices in competitive LotkaVolterra systems.
E. C. Zeeman, M.L. Zeeman
Differential Equations, Dynamical Systems & Control Science. Marcel Dekker, Inc., NY. (1993) 353364.
Hopf bifurcations in competitive threedimensional LotkaVolterra systems
M. L. Zeeman
Dynamics Stability Systems 8 (1993) 189217
Ruthenium Dioxide Hydrate, is it a Redox Catalyst?,
A. Mills and M. L. Zeeman
J. Chemical Society, Chemical Communications, 1981, 948950.