Collin Roesler

Professor of Earth and Oceanographic Science

Teaching this semester

EOS 2550. Remote Sensing of the Ocean: A View from the Top

In the 1980s, NASA’s satellite program turned some of its space-viewing sensors towards the earth to better understand its processes. Since that time, NASA’s Earth Observatory mission has yielded a fleet of satellites bearing an array of sensors that provide a global view of the earth each day. Examines global ocean processes using lenses that target specific parts of the energy spectrum arising from the oceans, from ultraviolet light through microwaves, revealing such properties as ocean bathymetry, temperature, salinity, waves, currents, primary productivity, sea ice distribution, and sea level, among others. Now that satellite data records are exceeding thirty years in length, they can be used to interpret climate-scale responses of the ocean from space.

EOS 2585/ENVS 2282. Ocean and Climate

The ocean covers more than 70 percent of Earth’s surface. It has a vast capacity to modulate variations in global heat and carbon dioxide, thereby regulating climate and ultimately life on Earth. Beginning with an investigation of paleo-climate records preserved in deep-sea sediment cores and in Antarctic and Greenland glacial ice cores, the patterns of natural climate variations are explored with the goal of understanding historic climate change observations. Predictions of polar glacial and sea ice, sea level, ocean temperatures, and ocean acidity investigated through readings and discussions of scientific literature. Weekly laboratory sessions devoted to field trips, laboratory experiments, and computer-based data analysis and modeling to provide hands-on experiences for understanding the time and space scales of processes governing oceans, climate, and ecosystems. Laboratory exercises form the basis for student research projects. Mathematics 1700 is recommended.

EOS 2585/ENVS 2282. Ocean and Climate, L1

The ocean covers more than 70 percent of Earth’s surface. It has a vast capacity to modulate variations in global heat and carbon dioxide, thereby regulating climate and ultimately life on Earth. Beginning with an investigation of paleo-climate records preserved in deep-sea sediment cores and in Antarctic and Greenland glacial ice cores, the patterns of natural climate variations are explored with the goal of understanding historic climate change observations. Predictions of polar glacial and sea ice, sea level, ocean temperatures, and ocean acidity investigated through readings and discussions of scientific literature. Weekly laboratory sessions devoted to field trips, laboratory experiments, and computer-based data analysis and modeling to provide hands-on experiences for understanding the time and space scales of processes governing oceans, climate, and ecosystems. Laboratory exercises form the basis for student research projects. Mathematics 1700 is recommended.

ENVS 2282/EOS 2585. Ocean and Climate

The ocean covers more than 70 percent of Earth’s surface. It has a vast capacity to modulate variations in global heat and carbon dioxide, thereby regulating climate and ultimately life on Earth. Beginning with an investigation of paleo-climate records preserved in deep-sea sediment cores and in Antarctic and Greenland glacial ice cores, the patterns of natural climate variations are explored with the goal of understanding historic climate change observations. Predictions of polar glacial and sea ice, sea level, ocean temperatures, and ocean acidity investigated through readings and discussions of scientific literature. Weekly laboratory sessions devoted to field trips, laboratory experiments, and computer-based data analysis and modeling to provide hands-on experiences for understanding the time and space scales of processes governing oceans, climate, and ecosystems. Laboratory exercises form the basis for student research projects. Mathematics 1700 is recommended.

ENVS 2282/EOS 2585. Ocean and Climate, L1

The ocean covers more than 70 percent of Earth’s surface. It has a vast capacity to modulate variations in global heat and carbon dioxide, thereby regulating climate and ultimately life on Earth. Beginning with an investigation of paleo-climate records preserved in deep-sea sediment cores and in Antarctic and Greenland glacial ice cores, the patterns of natural climate variations are explored with the goal of understanding historic climate change observations. Predictions of polar glacial and sea ice, sea level, ocean temperatures, and ocean acidity investigated through readings and discussions of scientific literature. Weekly laboratory sessions devoted to field trips, laboratory experiments, and computer-based data analysis and modeling to provide hands-on experiences for understanding the time and space scales of processes governing oceans, climate, and ecosystems. Laboratory exercises form the basis for student research projects. Mathematics 1700 is recommended.

My teaching focus is in Oceanography while my research interests focus on response of ocean ecosystems to environmental forcing; Research foci: environmental optics with specialization in bio-optical modeling of phytoplankton biomass, production, ecophysiology, functional groups, particularly with respect to Harmful Algal Blooms; inherent optical properties of seawater and sea ice, particle-specific optics, optical instrumentation, ocean observing systems.

Since 1989, I have spent over 300 days at sea on more than 35 cruises on major research vessels (over 90 days on Antarctic icebreakers). Additionally, I have spent approximately 40 days on Sea Ice Field Stations in the Arctic.

slide slide slide

Education

  • Ph.D., University of Washington
  • M.S., Oregon State University
  • B.S., Brown University

Publications

(*peer-reviewed, ‡undergraduate and †graduate student or post doc authors)

2016-2020

*Xing, X., H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux and F. D'Ortenzio. 2017. Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter. Limnol. Oceanogr. Methods, 15: 80–93. doi:10.1002/lom3.10144

*Huntington, T. G., W. M. Balch, G. R. Aiken, J. Sheffield, L. Luo, C. S. Roesler, and P. Camill. 2016. Climate change and dissolved organic carbon export to the Gulf of Maine, J. Geophys. Res. Biogeosci., 121, 27002716, doi:10.1002/2015JG003314.

*Roesler, C. and C. Culbertson, 2016. Lake transparency:  A window into decadal variations in dissolved organic carbon concentrations in lakes of Acadia National Park, Maine, p. 225-236. In:  P.M. Glibert, T.M. Kana (eds.), Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective, DOI 10.1007/978-3-319-30259-1_18.

Roesler, C. S. 2016. In Situ Chlorophyll Fluorescence Observations on NERACOOS Mooring A01:  Revised Data Flagging and Changing Phenology. Boston: Massachusetts Water Resources Authority. Report 2016-15. 11 p.

*Roesler, C. 2016. Polar oceanography: Engendering students with a sense of place and a sense of time. Oceanography 29: 293-295.

 

2011-2015

‡Kramer, S. and C. S. Roesler. 2014. Phytoplankton and nitrate in Harpswell Sound:  A multi--‐scale investigation. Proceedings Ocean Optics XXII, 11 p.

‡Nardelli, S. and C. S. Roesler. 2014. Using data from the LISST-100 to recreate phytoplankton size distribution and processes in Harpswell Sound, Maine. Proceedings Ocean Optics XXII, 12 p.

Roesler, C. S. 2014a. Calibration, Correction and Flagging of Data from the Chlorophyll Fluorometer on GoMOOS Buoy A01: Nov 2005-Jun 2014. Boston: Massachusetts Water Resources Authority. Report 2014-14. 11 p.

Roesler, C. S. 2014b. Calibration and Correction of the Chlorophyll Fluorometer on GoMOOS Buoy A01: Nov 2005-Jun 2013. Boston: Massachusetts Water Resources Authority. Report 2014-13. 6 p.

Sathyendranath, S., S. Alvain, A. Bracher, T. Hirata, S. Lavender, D. Raitsos, C. S. Roesler. 2014. Chapter 5. Remote Sensing algorithms for multiple phytoplankton types, pp. 101-124. In: Phytoplankton functional types from space. S. Sathyendranath and V. Stuart [editors], Reports of the International Ocean-Colour Coordinating Group (IOCCG), No. 15, IOCCG, Dartmouth, Canada. 156 p., ISBN: ISSN 1098-6030.

 *‡Thibodeau, P. and C. S. Roesler, S. Drapeau, P. Matondkar, J. I. Goes, and P. J. Werdell†. 2014. Locating Noctiluca miliaris in the Arabian Sea: An optical proxy approach. Limnol. Oceanogr. 59(6): 2042=2056.

*†Werdell, P. J., C. S. Roesler, and J. I. Goes. 2014. Discrimination of phytoplankton functional groups using an ocean reflectance inversion model. Appl. Optics 53(22): 4833-4849. http://dx.doi.org/10.1364/AO.99.099999. This publication has been selected by the Editors, Andrew Dunn and Anthony Durkin, for publication in the most recent issue of the Virtual Journal for Biomedical Optics (VJBO), which is a special feature of Optical Society of America's Optics InfoBase, http://vjbo.osa.org/virtual_issue.cfm

†Werdell, P. J., C. S. Roesler and J. I Goes. 2014. Remotely searching for Noctiluca miliaris in the Arabian Sea. Proceedings Ocean Optics XXII, 19 p.

‡White, D. P. and C. S. Roesler. 2014. Characterization and dynamics of Dissolved Organic Matter (DOM) in four Maine Rivers. Proceedings Ocean Optics XXII, 14 p.

*French, N. H. F., L. L. Bourgeau-Chavez, M. J. Falkowski, S. Goetz, L. Jenkins, P. Camill, C. S. Roesler, and D. G. Brown. 2013. Chapter 5: Remote sensing for mapping and modeling of land-based carbon flux and storage, pp. 95-143. In D. G Brown, D. T. Robinson, N. H. F. French, B. Reed. [eds]. Land Use and the Carbon Cycle: Advances in Integrated Science, Management, and Policy. Cambridge University Press, NY. http://www.cambridge.org/ca/knowledge/isbn/item6962593/?site_locale=en_CA

*Roesler, C. S. and A. H. Barnard. 2013. Optical proxy for phytoplankton biomass in the absence of photophysiology: Rethinking the absorption line height. Methods in Oceanography 7: 79-94. http://dx.doi.org/10.1016/j.mio.2013.12.003

*†Sauer, M. J. and C. S. Roesler. 2013. Unraveling phytoplankton optical variability in the Gulf of Maine during the spring and fall transition period. Continental Shelf Res 61-62: 125-136.

*†Estapa, M., L. Mayer, E. Boss, L. M. Mayer and C. S. Roesler. 2012. Role of iron and organic carbon in mass-specific light absorption by particulate matter from Louisiana coastal waters. Limnol. Oceanogr. 57(1): 97-112.

*† Sauer, M. J., C. S. Roesler, P. J. Werdell† and A. H. Barnard. 2012. Under the hood of satellite empirical chlorophyll a algorithms: revealing the dependencies of maximum band ratio algorithms on inherent optical properties. Optics Express 20(19): 20,920-20,933.

 

2006-2010

*†Aurin, D. A., H. M. Dierssen, M. S. Twardowski, and C. S. Roesler. 2010. Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing. J. Geophys. Res. 115: C07011 (pp. 1-18). DOI: 10.1029/2009JC005837.

*†Proctor, C. W. and C. S. Roesler. 2010. New insights on obtaining phytoplankton concentration and composition from in situ multispectral Chlorophyll fluorescence. Limnol. Oceanogr. Methods 8:695-708.

*†Slade, W. H., E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, T. K. Westberry. 2010. Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation. J. Atmos. Oceanic Tech. 27(10): 1733-1746.

Pettigrew, N. P., Xue, H., J. D. Irish, W. Perrie, C. S. Roesler, A. C. Thomas, D. W. Townsend. 2008. The Gulf of Maine Ocean Observing System: Generic Lessons Learn in the first seven years of operation (2001-2008). Marine Tech. Soc. J. 42: 91-102.

Pettigrew, N., C. Roesler, F. Neville, and H. Deese. 2008. An Operational Real-Time Ocean Sensor Network in the Gulf of Maine, p. 213-238. In S. Nittel, A. Labrinidis and A. Stefanidis [eds.], GeoSensor Networks. Lecture Notes in Computer Science. Springer Berlin Heidelberg.

*Roesler, C. S. and E. Boss. 2008. In situ measurement of the inherent optical properties (IOPs) and potential for harmful algal bloom (HAB) detection and coastal ecosystem observations, Chapter 5, pp. 153-206. In Babin, Marcel; Roesler, Collin S.; Cullen, John (Eds.). Real-time Coastal Observing Systems for Marine Ecosystem Dynamics and Harmful Algal Blooms: Theory, Instrumentation and Modelling. Paris: UNESCO.

*†Belzile, C., C. S. Roesler, J. P. Christensen, N. Shakhova and I. Semiletov. 2006. Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption. Est. Coastal Shelf Sci. 67: 441-449.

Boss, E. and C. S. Roesler. 2006. Ch. 8. Over constrained linear matrix inversion with statistical selection, pp. 42-46. In Z. P. Lee [ed] Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. IOCCG Report #5. 

 

2001-2005

*Babin, M., J.J. Cullen, C.S. Roesler, P.L. Donaghay, G.J. Doucette, M. Kahru, M.R. Lewis, C.A. Scholin, M.E. Sieracki, and H.M. Sosik. 2005. New approaches and technologies for observing harmful algal blooms. Oceanography 18: 210-227. http://dx.doi.org/10.5670/oceanog.2005.55.

*†Etheridge, S. M. and C. S. Roesler. 2005. Effects of temperature, growth, irradiance, and salinity on photosynthesis, growth rates, total toxicity, and toxin composition for Alexandrium fundyense isolates form the Gulf of Maine and the Bay of Fundy. Deep-Sea Res. II 52: 2491-2500.

*†Peng, W, E. Boss and C. S. Roesler. 2005. Uncertainties of inherent optical properties obtained from semi-analytical inversions of ocean color. Applied Optics 44: 4074-4085.

Pettigrew, N. P. and C. S. Roesler. 2005. Implementing the Gulf of Maine Ocean Observing System. Oceans 2: 1362-1369.

*†Belzile, C., W. F. Vincent, C. Howard-Williams, I. Hawes, M. James, M. Kumagai, C.S. Roesler. 2004. Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake. Water Resources Research 40:W12512, doi:10.1029/2004WR003090. 

*†Etheridge, S. M., G. P. Pitcher and C. S. Roesler. 2004. Depuration and transformation of PSP toxins in the South African abalone Haliotis midae, pp. 175-177. In: Steidinger, K. A., Lansdberg, J. H., Tomas, C. R., and Vargo, G. A. [eds.]. Harmful Algae 2002. Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO.

*†Etheridge, S. M. and C. S. Roesler. 2004. Temporal variations in phytoplankton, particulates, and colored dissolved organic material based on optical properties during a Long Island brown tide compared to an adjacent embayment. Harmful Algae 3: 331-342.

*†Etheridge, S. M. and C. S. Roesler. 2004. Geographic trends in Alexandrium spp. growth and toxicity as function of environmental conditions, pp. 65-67. In: Steidinger, K. A., Lansdberg, J. H., Tomas, C. R., and Vargo, G. A. [eds.]. Harmful Algae 2002. Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO.

*Roesler, C. S., S. M. Etheridge and G. C. Pitcher. 2004. Application of an ocean color algal taxa detection model to red tides in the Southern Benguela, pp.303-305. In: Steidinger, K. A., Lansdberg, J. H., Tomas, C. R., and Vargo, G. A. [eds.]. Harmful Algae 2002. Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO.

*Roesler, C. S., and E. Boss. 2003. Spectral beam attenuation coefficient retrieved from ocean color inversion, Geophys. Res. Lett., 30(9), 1468-1472, doi:10.1029/2002GL016185.

*†Simeon, J., C. Roesler, W. S. Pegau, and C. Dupouy. 2003. Sources of spatial variability in light absorbing components along an equatorial transect from 165°E to 150°W. J. Geophys. Res. 108(C10): 3333, doi:10.1029/2002JC001613.

*†Werdell, P. J., and C. S. Roesler. 2003. Remote assessment of benthic substrate composition in shallow waters using multispectral reflectance. Limnol. Oceanogr. 48: 557-567.

*Bricaud, A., C. Roesler, J. Ishizaka, and J. Parslow. 2002. Bio-optical studies during the JGOFS-Equatorial Pacific program: A contribution to the knowledge of the Equatorial system. Deep Sea Res. 49: 2583-2599.

*Roesler, C. S., C. W. Culbertson, S. M. Etheridge†, R. Goericke, R. P. Kiene, L. G. Miller, and R. S. Oremland. 2002. Distribution, production, and ecophysiology of Picocystis strain ML in Mono Lake, California. Limnol. Oceanogr. 47: 440-452.

*Gardner, W. D. , J. C. Blakey, I.D. Walsh, M. J. Richardson, S. Pegau, J.R.V. Zaneveld, C. Roesler, M.C. Gregg, J. A. MacKinnon, H. M. Sosik, and A. J. Williams III. 2001. Optics, particles, stratification, and storms on the New England continental shelf. J.Geophys. Res. 106: 9473-9498.

*Sosik, H. M., R. E. Green, W. S. Pegau, and C. S. Roesler. 2001. Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring. J. Geophys. Res. 106: 9455-9472.

 

1996-2000

*Schofield, O., J. Grzymski, W. P. Bissett, G. Kirkpatrick, D. F. Millie, M. Moline, and C. S. Roesler. 2000. Optical monitoring and forecasting systems for harmful algal bloom: possibility or pipe dream? J. Phycol. 35: 1477-1496.

*Brandt, R. E., C. S. Roesler, and S. G. Warren. 1999. Spectral albedo, absorbance, and transmittance of Antarctic sea ice. Amer. Meteorol. Soc. 5: 456-459.

*†Leathers, R. A., C. S. Roesler, and N. J. McCormick. 1999. Ocean inherent optical property determination from in-water light field measurements. Appl. Opt. 38: 1-8.

Roesler, C. S. 1999. The color of icebergs, p. 336-337. In: J. Ruben [ed.], Antarctica. Lonely Planet.

*Grenfell, T., D. G. Barber, A. K. Fung, A. J. Gow, K. C. Jezek, E. J. Knapp, S. V. Nghiem, R. G. Onstott, D. K. Perovich, C. S. Roesler, C. T. Swift, and F. Tanis. 1998. Evolution of electromagnetic signatures of sea ice from initial formation to the establishment of thick first-year ice. IEEE Trans. Geosci. and Rem. Sens. 36(5): 1642-1654.

†McLeroy-Etheridge, S. L., and C. S. Roesler. 1998. Are the inherent optical properties of phytoplankton responsible for the distinct ocean colors observed during harmful algal blooms? Ocean Opt 14: 109-116.

*Perovich, D. K., J. Longacre, D. G. Barber, R. A. Maffione, G. F. Cota, C. D. Mobley, A. J. Gow, R. G. Onstott, T. C. Grenfell, W. S. Pegau, M. Landry, C. S. Roesler. 1998. Field observations of the electromagnetic properties of first-year sea ice. IEEE Trans. Geosci. and Rem. Sens. 36(5): 1705-1715.

*Perovich, D. K., C. S. Roesler, and W. S. Pegau. 1998. Variability in Arctic sea ice optical properties. J. Geophys. Res. 103(C1): 1193-1208.

*Roesler, C. S. 1998. Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients from the Quantitative Filter Technique. Limnol. Oceanogr. 43: 1649-1660.

Roesler, C. S., and S. L. McLeroy-Etheridge. 1998. Remote detection of harmful algal blooms. SPIE Ocean Optics 14: 117-128.

Warren, S. G., C. S. Roesler, and R. E. Brandt. 1998. Solar radiation processes in the East Antarctic sea ice zone. Antarctic Journal US 32: 185 - 187.

†Ciotti, A. M., J. J. Cullen, C. S. Roesler, and M. R. Lewis. 1997. Influence of phytoplankton size structure on the spectral attenuation coefficient in the upper ocean, p. 380-385. Ocean Optics XIII. International Society for Optics and Photonics.

 

1987-1995

*Bricaud, A., C. S. Roesler†, and J. R. V. Zaneveld. 1995. In situ methods for measuring the inherent optical properties of ocean waters. Limnol. Oceanogr. 40(2): 393-410. 

*†Roesler, C. S. and M. J. Perry. 1995. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. J. Geophys. Res. 100(C7): 13,279-13,294.

Iturriaga, R. H., and C. S. Roesler†. 1994. Fluorometric characterization of dissolved and particulate matter in Arctic sea ice, p. 920-932. Ocean Optics XII. International Society for Optics and Photonics.

Roesler, C. S., and R. H. Iturriaga. 1994. Absorption properties of marine-derived material in Arctic sea ice, p. 933-943. Ocean Optics XII. International Society for Optics and Photonics.

Roesler, C. S., and J. R. V. Zaneveld. 1994. High-resolution vertical profiles of spectral absorption, attenuation, and scattering coefficients in highly stratified waters, p. 309-319. Ocean Optics XII. International Society for Optics and Photonics.

*Warren, S. G., C. S. Roesler†, V. Morgan, R. Brandt, I. Goodwin, and I. Allison. 1993. Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves. J. Geophys. Res. 98(C4): 6921-6928.

Iturriaga, R., A. Morel, C. Roesler†, and D. Stramski. 1991. Individual and bulk analysis of the optical properties of marine particulates: examples of merging these two scales of analysis, p. 339-347. Particle analysis in oceanography. Springer Berlin Heidelberg.

*†Roesler, C. S., M. J. Perry, and K. L. Carder. 1989. Modeling in situ phytoplankton absorption from total absorption spectra. Limnol. Oceanogr. 34: 1512-1525.

*†Roesler, C. S. and D. B. Chelton. 1987. Zooplankton variability in the California Current, 1951-1982. CalCOFI Rep. 28: 59-96.

 

Books

Babin, M, C. S. Roesler and J. J. Cullen [eds]. 2008. Real-Time Coastal Observing Systems for Ecosystem Dynamics and Harmful Algal Blooms. UNESCO Series Monographs on Oceanographic Methodology. UNESCO Publishing, Paris, 807pp.

Mobley, C., E. Boss and C. Roesler. 2011. Ocean Optics Web Book. http://www.oceanopticsbook.info/

Selected Other Professional Activities

Science Team MemberNASA Plankton Aerosol Cloud ocean Ecosystem (PACE)

Research Partner: Sustainable Ecological Aquaculture Network (SEANET)

Co-AuthorOcean Optics Web Book

Instructor:  Graduate and Professional Optical Oceanography Courses

News