Computer Science 3420: Optimization and Uncertainty Spring 2020

Instructor: Stephen Majercik Office: Searles 222 Email: smajerci@bowdoin.edu Class Times: Tuesday, Thursday: 2:50 – 4:15 pm, Searles 126 Office Hours: Monday, 6:00-8:00pm, Searles 223; Thursday, 11:30am-1:00pm, Searles 222

COURSE DESCRIPTION

There are many views of what artificial intelligence is. In one view, artificial intelligence attempts to represent desires and goals in a way that can be "understood" by a computer and to design algorithms that help the computer avoid undesirable actions and achieve the desired goal. For many real-world tasks, this means solving optimization problems and coping with uncertainty. A numeric framework, rather than the symbolic one of traditional artificial intelligence, is useful for expressing and attacking such problems. We will explore a number of artificial intelligence topics in this numeric framework.

COURSE PREREQUISITE

CSCI 2101 or permission of instructor

TEXTBOOK (optional) Artificial Intelligence: A Modern Approach (3rd Ed.) S. Russell and P. Norvig Prentice Hall Publishing, 2010

REQUIREMENTS

90% Problem Sets and Programming Assignments 10% Ethical Issues Essay Tiebreaker: Class Participation

ACADEMIC INTEGRITY POLICY

You are expected to follow Bowdoin's Computer Use Policy and its Academic Honor Code, as well as the Computer Science Department's collaboration policy (https://turing.bowdoin.edu/dept/collab.php).

SCHEDULE (SUBJECT TO CHANGE)

Dates	Topic	Assignment	Assignment	Reading
		Distributed	Due	(optional
				except for
				handouts)
Jan 25	Introduction			NA
Jan 27, Feb 1	Planning and Reasoning			10.1-10.2
Feb 3, 8, 10, 15	Planning as Satisfiability	A1a (2/8)		10.4.1
		A1b (2/15)		
Feb 17, 22, 24, 29	Planning as Graph Analysis	A2 (2/29)	A1 (2/29)	10.3
Mar 2, 7	Will an advanced artificial			Handouts
	intelligence eliminate the			
	human race?			
Mar 9	When?	A3	A2	Why
				bother
Mar 28, 30,	Bayes Networks	A4a (4/4)	A3 (4/4)	13.1-13.5,
Apr 4, 6, 11, 13		A4b (4/13)		14.1-14.4
Apr 18, 20, 25, 27,	Markov Decision Processes	A5a (4/20)	A4 (4/20)	17.1-17.3,
May 2, 4		A5b (4/27)	A5a (4/27)	21.1-21.3
		A5c (5/4)	A5b (5/4)	
May 9, 11	TBA	Project	A5c $(5/11)$	TBA
May 18	NA		Project	NA