## CSCI 2330 - Floating Point Exercises

1. Using our toy 8 -bit floating point representation (with $\mathrm{k}=4$ exponent bits and 3 fractional bits), convert 00110100 into a decimal value.
2. Using the same 8-bit representation, convert 10000101 into a decimal value (working with a fraction here is advisable).
3. If $\mathbf{d}$ is a double in $C$, does $d<0.0$ imply ( $\left.\left(d^{*} 2\right)<0.0\right)$ ? (remember this is not true for ints)
4. Excluding infinity, what is the decimal value of the largest 32-bit IEEE floating point number? You should be able to write down the exact (unsimplified) expression.
5. IEEE 754 encodes the exponent value E using an unsigned exp field from which a bias value is subtracted. An alternate approach would be to just make exp encode a signed number and dispense with the bias term. Is there a reason to prefer the unsigned - bias approach?
(Hint: one of the design goals of IEEE 754 was to have floating point numbers ordered in the same way as if they were ints, to allow for easy comparisons -- e.g., the binary values $001<010<011$ are ordered accordingly regardless of whether they are ints or floating point numbers. Think about what an ordering of floating point values would look like if exp encoded a signed number.)
