
Sean Barker

Shell Design

1 1

1

Building(a(Shell

5

shell:(program(that(runs(other(programs

6

Unix/Linux(Process(Hierarchy

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

7

shell
program(that(runs(other(programs(on(behalf(of(the(user

sh Original(Unix(shell((Stephen(Bourne,(AT&T(Bell(Labs,(1977)
bash “Bourne?Again”(Shell,(widely(used

default(on(most(Unix/Linux/Mac(OS(X(systems
others...

while (true) {
Print command prompt.
Read command line from user.
Parse command line.
If command is built-in, do it.
Else fork process to execute command.

in child:
Execute requested command with execv.

(never returns)
in parent:

Wait for child to complete.
}

Sean Barker

Signals

2

2

8

terminal ≠(shell
User(interface(to(shell(and(other(programs.

Graphical((GUI)(vs.(command?line((CLI)

Command@line(terminal((emulator):
Input((keyboard)
Output((screen)

9

Background(vs.(Foreground
Users(generally(run(one(command(at(a(time

Type(command,(read(output,(type(another(command

Some(programs(run(“for(a(long(time”

A(“background”(job(is(a(process(we(don't(want(to(wait(for

$ emacs fizz.txt # shell stuck until emacs exits.

$ emacs boom.txt & # emacs runs in background
[1] 9073 # while shell is...
$ gdb ./umbrella # immediately ready for next command

don't(do(this(with(emacs unless(using(X(windows(version

10

Managing(Background(Jobs
Shell(waits(for(and(reaps(foreground(jobs.

Background(jobs(become(zombies(when(they(terminate.
Shell(might(run(for(a(really(long(time!
Kernel(may(run(out(of(memory!
fork()(returns(?1(if(per?user(process(quota(exceeded

Shell(must(explicitly(reap(background(jobs.
One(way:(check/reap(any(completed(background(jobs(before(every(prompt.

OK,(assuming(foreground(jobs/user(inactivity(are(not(too(long.
Another(way:(OS(delivers(signal via(exceptional(control(flow(when(child(ends.

OK(to(respond(by(reaping,(but(complicated(concurrency(makes(it(tricky.

$ ulimit -u # bash syntax
1024

12

Signals
Signal:(small(message(notifying(a(process(of(event(in(system

like(exceptions(and(interrupts
sent(by(kernel,(sometimes(at(request(of(another(process
ID(is(entire(message

ID Name Corresponding2Event Default2Action Can2
Override?

2 SIGINT Interrupt((Ctrl?C) Terminate Yes
9 SIGKILL Kill(process((immediately) Terminate No

11 SIGSEGV Segmentation(violation Terminate(&(Dump Yes
14 SIGALRM Timer(signal Terminate Yes

15 SIGTERM Kill(process((politely) Terminate Yes
17 SIGCHLD Child(stopped(or(terminated Ignore Yes
18 SIGCONT Continue(stopped(process Continue((Resume) No
19 SIGSTOP Stop(process((immediately) Stop((Suspend) No

20 SIGTSTP Stop(process((politely) Stop((Suspend) Yes
…

Sean Barker

Signal Control Flow

3

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

IcurrInext

(1) Signal received
by process

Sean Barker

Signal Handler as Concurrent Flow

4

Process	A		
	
while (1)
 ;

Process	A	
	
handler(){
 …
}

Process	B	

Time	

Sean Barker

Signal Handler as Concurrent Flow (alt)

5

Signal	delivered	
to	process	A	

Signal	received	
by	process	A	

Process	A	 Process	B	

user	code	(main)	

kernel	code	

user	code	(main)	

kernel	code	

user	code	(handler)	

context	switch	

context	switch	

kernel	code	

user	code	(main)	

Icurr	

Inext	

Sean Barker

Process Groups

6

Fore-	
ground	
job	

Back-	
ground	
job	#1	

Back-	
ground	
job	#2	

Shell	

Child	 Child	

pid=10
pgid=10

Foreground		
process	group	20	

Background	
process	group	32	

Background	
process	group	40	

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

