CSCI 3310 - Address Translation Exercises

Consider a machine with a total memory size of 256 bytes, a page size of 16 bytes, and the (partial) page table shown below:

Page	Frame
0	2
1	6
2	11
3	9
4	5
5	0
6	4
\ldots	\cdots

1. How many possible pages can a process have?
2. How many bits are in a virtual address?
3. How many bits of the virtual address are for \mathbf{p} (page number) and for \mathbf{d} (page offset)?
4. Translate virtual address 24 to its physical memory address. Do this in two ways: using the computationally expensive non-binary method, and then using the efficient binary method.

On most machines, each address corresponds to a specific byte of memory -- such machines are called byte-addressable. Some special-purpose machines, on the other hand, use a different model where each address corresponds to a word of memory (the 'natural' data size of the processor) -- these machines are called word-addressable, and on such machines, a word is the smallest addressable quantity instead of a byte.
5. Suppose we have the same memory system described previously running on a wordaddressable machine with a 32-bit word size. Repeat questions 1 through 4 given this memory architecture. Remember that addresses are now in terms of words, not bytes. What set of bytes in physical memory does virtual address 24 reference?
6. Using this word-addressable machine, translate virtual address 13 to its physical memory address (again using both methods), and give the set of physical memory bytes that this corresponds to.

