
Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Last Class: Demand Paged Virtual Memory

Benefits of demand paging:
• Virtual address space can be larger than physical address space.
• Processes can run without being fully loaded into memory.

– Processes start faster because they only need to load a few pages (for code
and data) to start running.

– Processes can share memory more effectively, reducing the costs when a
context switch occurs.

• A good page replacement algorithm can reduce the number of
page faults and improve performance

• FIFO, MIN, LRU

1

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Today: LRU Approximations,
Multiprogramming

• LRU approximations:
– Second Chance
– Enhanced Second Chance

• Hardware support for page replacement algorithms

• Replacement policies for multiprogramming

2

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Implementing LRU:
• Perfect LRU:

• Keep a time stamp for each page with the time of the last access. Throw
out the LRU page. Problems?

• Keep a list of pages, where the front of the list is the most recently used
page, and the end is the least recently used.
• On a page access, move the page to the front of the list. Doubly link

the list. Problems?

3

• OS must record time stamp for each memory access, and to throw
out a page the OS has to look at all pages. Expensive!

• Still too expensive, since the OS must modify multiple
pointers on each memory access

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Approximations of LRU
• Hardware Requirements: Maintain reference bits with each page.

– On each access to the page, the hardware sets the reference bit to '1'.
– Set to 0 at varying times depending on the page replacement algorithm.

• Additional-Reference-Bits: Maintain more than 1 bit, say 8 bits.
– On reference, set high bit to 1
– At regular intervals or on each memory access, shift the byte right, placing a

0 in the high order bit.
– On a page fault, the lowest numbered page is kicked out.

=> Approximate, since it does not guarantee a total order on the pages.
=> Faster, since setting a single bit on each memory access.
• Page fault still requires a search through all the pages.

4

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Second Chance Algorithm: (a.k.a. Clock)
Use a single reference bit per page.

1. OS keeps frames in a circular list.
2. On reference, set page reference bit to 1
3. On a page fault, the OS

a) Checks the reference bit of the next frame.
b) If the reference bit is ‘0’, replace the page, and set its bit to ‘1’.
c) If the reference bit is ‘1’, set bit to ‘0’, and advance the pointer to the next

frame

5

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Second Chance / Clock Example

6

=> One way to view the clock algorithm is as a crude
partitioning into two categories: young and old pages.

• Expense of memory reference, page fault?

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Second Chance Algorithm
• Less accurate than additional-reference-bits, since the reference

bit only indicates if the page was used at all since the last time it
was checked by the algorithm.

• Fast, since setting a single bit on each memory access, and no
need for a shift.

• Page fault is faster, since we only search the pages until we find
one with a ‘0’ reference bit.

• Simple hardware requirements.
 Will it always find a page?
 What if all bits are ‘1’?

7

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Enhanced Second Chance
• It is cheaper to replace a page that has not been written

– OS need not be write the page back to disk

 => OS can give preference to paging out un-modified pages
– Proactively write out modified pages

• Hardware keeps a modify bit (in addition to the reference bit)
 ‘1’: page is modified (different from the copy on disk)
 ‘0’: page is the same as the copy on disk

8

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Enhanced Second Chance
• The reference bit and modify bit form a pair (r,m) where

1. (0,0) neither recently used nor modified - replace this page!
2. (0,1) not recently used but modified - not as good to replace, since the OS

must write out this page, but it might not be needed anymore.
3. (1,0) recently used and unmodified - probably will be used again soon, but

OS need not write it out before replacing it
4. (1,1) recently used and modified - probably will be used again soon and

the OS must write it out before replacing it

• On a page fault, the OS searches for the first page in the lowest
nonempty class.

9

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Page Replacement in Enhanced Second
Chance

• The OS goes around at most three times searching for the
(r = 0, m = 0) class.

1. Page with (0,0) => replace the page.
2. Page with (0,1) => initiate an I/O to write out the page, locks the page in

memory until the I/O completes, clears the modified bit, and continue the
search

3. For pages with the reference bit set, the reference bit is cleared.
4. If the hand goes completely around once, there was no (0,0) page.

• On the second pass, a page that was originally (0,1) or (1,0) might
have been changed to (0,0) => replace this page

• If the page is being written out, waits for the I/O to complete and then
remove the page.

• A (0,1) page is treated as on the first pass.
• By the third pass, all the pages will be at (0,0).

10

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Clock Example

11

0 1 0 0 0 0

0 0

0 00 0

0 1

1 0

r m

write

writewritereplace

Computer Science Lecture 15, page Computer Science

Multiprogramming and Thrashing

CS377: Operating Systems

• Thrashing: the memory is over-committed and pages are
continuously tossed out while they are still in use
– memory access times approach disk access times since many memory

references cause page faults
– Results in a serious and very noticeable loss of performance.

• What can we do in a multiprogrammed environment to limit
thrashing?

12

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Replacement Policies for Multiprogramming

• Give each process enough memory to avoid thrashing
– OS must decide this via the replacement policy

• Global replacement: put all pages from all processes in one pool
so that the physical memory associated with a process can grow
– Use a single LRU queue for all pages
– Advantages: Flexible, adjusts to divergent process needs
– Disadvantages: Thrashing might become more likely (Why?)

13

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Replacement Policies for Multiprogramming
• Per-process replacement: Each process has its own pool of frames.

– Run only groups of processes that fit in memory.
– Advantages: Isolation, protects processes
– Disadvantages: May not give a process enough memory and harm

performance

• How do we figure out how many page frames a process needs?
– Split evenly?

• Proportional allocation: allocate more page frames to large
processes.
– alloc = procSize / allProcSize * memSize

14

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Match Working Set
• Objective: Give each process enough frames for its

working set size
– Informally, the working set is the set of pages the process is

using right now
– More formally, it is the set of all pages that a process referenced

in the past T seconds

• How does the OS pick T?
– 1 page fault = 10msec
– 10msec = 2 million instructions

 => T needs to be a whole lot bigger than 2 million instructions.
– What happens if T is too small? too big?

15

Computer Science Lecture 15, page Computer Science

Working Set Determination

CS377: Operating Systems 16

• Like LRU, exact tracking is too expensive to use

• Sample: pick a small number of the page references (e.g., every
1000th reference) and assume this gives the working set
– Cheaper but just an approximation

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Page Fault Frequency Scheme
• Track faults: Track page fault frequency of each process instead

– If the page fault frequency > some threshold, give it more frames.
– If the page fault frequency < a second threshold, take away some frames

• Goal: the system-wide mean time between page faults should be
equal to the time it takes to handle a page fault.
– May need to suspend a process until overall memory demands decrease.

17

Computer Science Lecture 15, page Computer Science

Page Fault Frequency Scheme

• Advantages: Thrashing is less likely as process only
competes with itself. More consistent performance
independent of system load.

• Disadvantages: The OS has to figure out how many
pages to give each process and if the working set size
grows dynamically adjust its allocation.

CS377: Operating Systems 18

Computer Science Lecture 16, page Computer Science

Kernel Memory Allocators

• Buddy allocator
– Allocate memory in size of 2^n
– Can lead to internal fragmentation

• Slab allocator
– Group objects of same size in a “slab”
– Object cache points to one or more slabs
– Separate cache for each kernel data structure (e.g., PCB)
– Used in solaris, linux

CS377: Operating Systems 19

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Page Sizes
• Reasons for small pages?

– More effective memory use.
– Higher degree of multiprogramming possible.

• Reasons for large pages?
– Smaller page tables
– Amortizes disk overheads over a larger page
– Fewer page faults (for processes that exhibit locality of references)

• Page sizes are growing because:
– Physical memory is cheap. As a result, page tables could get huge with

small pages. Also, internal fragmentation is less of a concern with abundant
memory.

– CPU speed is increasing faster than disk speed. As a result, page faults
result in a larger slow down than they used to. Reducing the number of page
faults is critical to performance.

20

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Summary of Page Replacement Algorithms

• Unix and Linux use variants of Clock, Windows NT uses FIFO.
• Experiments show that all algorithms do poorly if processes have

insufficient physical memory (less than half of their virtual
address space).

• All algorithms approach optimal as the physical memory allocated
to a process approaches the virtual memory size.

• The more processes running concurrently, the less physical
memory each process can have.

• A critical issue the OS must decide is how many processes and the
frames per process that may share memory simultaneously.

21

Computer Science Lecture 15, page Computer Science

OS X Mavericks - Memory Management

22

