
Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Last Class: Paging & Segmentation
• Paging: divide memory into fixed-sized pages, map to frames (OS

view of memory)
• Segmentation: divide process into logical ‘segments’ (compiler

view of memory
• Combine paging and segmentation by paging individual segments

1

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Today: Demand Paged Virtual Memory
• Up to now, the virtual address space of a process fit in memory,

and we assumed it was all in memory.

• OS illusions
1. treat disk (or other backing store) as a much larger, but much slower main

memory
2. analogous to the way in which main memory is a much larger, but much

slower, cache or set of registers

• The illusion of an infinite virtual memory enables
1. a process to be larger than physical memory, and
2. a process to execute even if all of the process is not in memory
3. Allow more processes than fit in memory to run concurrently.

2

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Demand Paged Virtual Memory
• Demand Paging uses a memory as a cache for the disk
• The page table (memory map) indicates if the page is on disk or

memory using a valid bit
• Once a page is brought from disk into memory, the OS updates the

page table and the valid bit
• For efficiency reasons, memory accesses must reference pages

that are in memory the vast majority of the time
– Else the effective memory access time will approach that of the disk

• Key Idea: Locality---the working set size of a process must fit in
memory, and must stay there. (90/10 rule.)

3

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Demand Paged Virtual Memory

4

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

When to load a page?
• At process start time: the virtual address space must be no larger

than the physical memory.
• Overlays: application programmer indicates when to load and

remove pages.
– Allows virtual address space to be larger than physical address space
– Difficult to do and is error-prone

• Request paging: process tells an OS before it needs a page, and
then when it is through with a page.

5

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

When to load a page?
• Demand paging: OS loads a page the first time it is referenced.

– May remove a page from memory to make room for the new page
– Process must give up the CPU while the page is being loaded
– Page-fault: interrupt that occurs when an instruction references a page that

is not in memory.

• Pre-paging: OS guesses in advance which pages the process will
need and pre-loads them into memory
– Allows more overlap of CPU and I/O if the OS guesses correctly.
– If the OS is wrong => page fault
– Errors may result in removing useful pages.
– Difficult to get right due to branches in code.

6

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Implementation of Demand Paging
• A copy of the entire program must be stored on disk. (Why?)
• Valid bit in page table indicates if page is in memory.
 1: in memory 0: not in memory (either on disk or bogus address)

• When referenced, if the page is not in memory, trap to the OS
• The OS checks that the address is valid. If so, it

1. selects a page to replace (page replacement algorithm)
2. invalidates the old page in the page table
3. starts loading new page into memory from disk
4. context switches to another process while I/O is being done
5. gets interrupt that page is loaded in memory
6. updates the page table entry
7. continues faulting process (why not continue current process?)

7

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Swap Space
• What happens when a page is removed from memory?

– If the page contained code, we could simply remove it since it can be re-
loaded from the disk.

– If the page contained data, we need to save the data so that it can be
reloaded if the process it belongs to refers to it again.

– Swap space: A portion of the disk is reserved for storing pages that are
evicted from memory

• At any given time, a page of virtual memory might exist in one or
more of:
– The file system
– Physical memory
– Swap space

• Page table must be more sophisticated so that it knows where to
find a page

8

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Performance of Demand Paging
• Theoretically, a process could access a new page with each instruction.
• Fortunately, processes typically exhibit locality of reference

– Temporal locality: if a process accesses an item in memory, it will tend to reference
the same item again soon.

– Spatial locality: if a process accesses an item in memory, it will tend to reference
an adjacent item soon.

• Let p be the probability of a page fault (0 ≤ p ≤ 1).
• Effective access time = (1-p) x ma + p x page fault time

– If memory access time is 200 ns and a page fault takes 20 ms
– Effective access time = (1-p) x 200 + p x 20,000,000

• If we want the effective access time to be only 10% slower than memory access
time, what value must p have?

9

– 1.1 x 200 = (1-p) x 200 + p x 20,000,000
– p = 1 / 100,000

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Updating the TLB
• In some implementations, the hardware loads the TLB on a TLB miss.
• If the TLB hit rate is very high, use software to load the TLB

1. Valid bit in the TLB indicates if page is in memory.
2. on a TLB hit, use the frame number to access memory
3. trap on a TLB miss, the OS then

a) checks if the page is in memory
b) if page is in memory, OS picks a TLB entry to replace and then fills it in the

new entry
c) if page is not in memory, OS picks a TLB entry to replace and fills it in as

follows
i. invalidates TLB entry
ii. perform page fault operations as described earlier
iii. updates TLB entry
iv. restarts faulting process

All of this is still functionally transparent to the user.

10

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Transparent Page Faults
How does the OS transparently restart a faulting instruction?

• Need hardware support to save
1. the faulting instruction,
2. the CPU state.

• What about instructions with side-effects? (CISC)
– move -(r10), a : decrements register 10, then moves r10 to address a

• Solution: unwind side effects

11

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Transparent Page Faults
• Block transfer instructions where the source and destination

overlap can't be undone.

• Solution: check that all pages between the starting and ending
addresses of the source and destination are in memory before
starting the block transfer

12

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Page Replacement Algorithms
On a page fault, we need to choose a page to evict
Random: amazingly, this algorithm works pretty well.
• FIFO: First-In, First-Out. Throw out the oldest page. Simple to

implement, but the OS can easily throw out a page that is being
accessed frequently.

• MIN: (a.k.a. OPT). Throw out the page that will not be accessed
for the longest time (provably optimal [Belady'66]).

• LRU: Least Recently Used. Approximation of MIN that works
well if the recent past is a good predictor of the future. Throw out
the page that has not been used in the longest time.

13

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Example: FIFO
3 physical Frames
4 virtual Pages: A B C D
Reference stream: A B C A B D A D B C A
FIFO: First-In-First-Out

Number of page faults?

A B C A B D A D B C A

frame 1

frame 2

frame 3

14

A* A

B*

A

B

C*

A

B

C

A

B

C

D*

B

C

D

A*

C

D

A

C

D

A

B*

C*

A

B

C

A

B

7

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Example: MIN
MIN: Look into the future and throw out the page that will be accessed
farthest in the future.

Number of page faults?

15

A B C A B D A D B C A

frame 1

frame 2

frame 3

A* A

B*

A

B

C*

A

B

C

A

B

C

A

B

D*

A

B

D

A

B

D

A

B

D

A

C*

D

C

B

D

5

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Example: LRU
• LRU: Least Recently Used. Throw out the page that has not been
used in the longest time.

Number of page faults?

16

A B C A B D A D B C A

frame 1

frame 2

frame 3

A* A

B*

A

B

C*

A

B

C

A

B

C

A

B

D*

A

B

D

A

B

D

A

B

D

C*

B

D

C

B

A*

6

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Example: LRU

• When will LRU perform badly?

• Number of page faults?

17

A B C D A B C D A B C

frame 1

frame 2

frame 3

A* A

B*

A

B

C*

D*

B

C

D

A*

C

D

A

B*

C*

A

B

C

D*

B

C

D

A*

B*

D

A

B

C*

A

11

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Adding Memory: FIFO
Does adding memory always reduce the number of page faults?
FIFO:

A B C D A B E A B C D E

frame 1 A* A A D* D D E* E E E E E

frame 2 B* B B A* A A A A C* C C

frame 3 C* C C B* B B B B D* D

frame 1 A* A A A A A E* E E E D* D

frame 2 B* B B B B B A* A A A E*

frame 3 C* C C C C C B* B B B

frame 4 D* D D D D D C* C C

18

• Belady’s Anomaly: Adding page frames may actually cause more page faults
with certain types of page replacement algorithms (such as FIFO).

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Adding Memory: LRU
LRU:

A B C D A B E A B C D E

frame 1 A* A A D* D D E* E E C* C C

frame 2 B* B B A* A A A A A D* D

frame 3 C* C C B* B B B B B B

frame 1 A* A A A A A A A A A A E*

frame 2 B* B B B B B B B B B B

frame 3 C* C C C E* E E E D* D

frame 4 D* D D D D D C* C C

19

•With LRU, increasing the number of frames always decreases the number of
page faults. Why?

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Implementing LRU:
• Perfect LRU:

• Keep a time stamp for each page with the time of the last access. Throw
out the LRU page. Problems?

• Keep a list of pages, where the front of the list is the most recently used
page, and the end is the least recently used.
• On a page access, move the page to the front of the list. Doubly link

the list. Problems?

20

• OS must record time stamp for each memory access, and to throw
out a page the OS has to look at all pages. Expensive!

• Still too expensive, since the OS must modify multiple
pointers on each memory access

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Approximations of LRU
• Hardware Requirements: Maintain reference bits with each page.

– On each access to the page, the hardware sets the reference bit to '1'.
– Set to 0 at varying times depending on the page replacement algorithm.

• Additional-Reference-Bits: Maintain more than 1 bit, say 8 bits.
– On reference, set high bit to 1
– At regular intervals or on each memory access, shift the byte right, placing a

0 in the high order bit.
– On a page fault, the lowest numbered page is kicked out.

=> Approximate, since it does not guarantee a total order on the pages.
=> Faster, since setting a single bit on each memory access.
• Page fault still requires a search through all the pages.

21

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Second Chance Algorithm: (a.k.a. Clock)
Use a single reference bit per page.

1. OS keeps frames in a circular list.
2. On reference, set page reference bit to 1
3. On a page fault, the OS

a) Checks the reference bit of the next frame.
b) If the reference bit is ‘0’, replace the page, and set its bit to ‘1’.
c) If the reference bit is ‘1’, set bit to ‘0’, and advance the pointer to the next

frame

22

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Clock Example

=> One way to view the clock algorithm is as a crude
partitioning into two categories: young and old pages.

• Why not partition pages into more than two categories?

23

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Second Chance Algorithm
• Less accurate than additional-reference-bits, since the reference

bit only indicates if the page was used at all since the last time it
was checked by the algorithm.

• Fast, since setting a single bit on each memory access, and no
need for a shift.

• Page fault is faster, since we only search the pages until we find
one with a ‘0’ reference bit.

• Simple hardware requirements.
 Will it always find a page?
 What if all bits are ‘1’?

24

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Enhanced Second Chance
• It is cheaper to replace a page that has not been written

– OS need not be write the page back to disk

 => OS can give preference to paging out un-modified pages

• Hardware keeps a modify bit (in addition to the reference bit)
 ‘1’: page is modified (different from the copy on disk)
 ‘0’: page is the same as the copy on disk

25

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Enhanced Second Chance
• The reference bit and modify bit form a pair (r,m) where

1. (0,0) neither recently used nor modified - replace this page!
2. (0,1) not recently used but modified - not as good to replace, since the OS

must write out this page, but it might not be needed anymore.
3. (1,0) recently used and unmodified - probably will be used again soon, but

OS need not write it out before replacing it
4. (1,1) recently used and modified - probably will be used again soon and

the OS must write it out before replacing it

• On a page fault, the OS searches for the first page in the lowest
nonempty class.

26

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Page Replacement in Enhanced Second
Chance

• The OS goes around at most three times searching for the (0,0)
class.

1. Page with (0,0) => replace the page.
2. Page with (0,1) => initiate an I/O to write out the page, locks the page in

memory until the I/O completes, clears the modified bit, and continue the
search

3. For pages with the reference bit set, the reference bit is cleared.
4. If the hand goes completely around once, there was no (0,0) page.

• On the second pass, a page that was originally (0,1) or (1,0) might
have been changed to (0,0) => replace this page

• If the page is being written out, waits for the I/O to complete and then
remove the page.

• A (0,1) page is treated as on the first pass.
• By the third pass, all the pages will be at (0,0).

27

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Clock Example

28

Computer Science Lecture 14, page Computer Science

Multiprogramming and Thrashing

CS377: Operating Systems

• Thrashing: the memory is over-committed and pages are
continuously tossed out while they are still in use
– memory access times approach disk access times since many memory

references cause page faults
– Results in a serious and very noticeable loss of performance.

• What can we do in a multiprogrammed environment to limit
thrashing?

29

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Replacement Policies for Multiprogramming

• Proportional allocation: allocate more page frames to large
processes.
– alloc = s/S * m

• Global replacement: put all pages from all processes in one pool
so that the physical memory associated with a process can grow
– Advantages: Flexible, adjusts to divergent process needs
– Disadvantages: Thrashing might become even more likely (Why?)

30

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Replacement Policies for Multiprogramming
• Per-process replacement: Each process has its own pool of

pages.
• Run only groups of processes that fit in memory, and kick out the

rest.
• How do we figure out how many pages a process needs, i.e., its

working set size?
– Informally, the working set is the set of pages the process is using right now
– More formally, it is the set of all pages that a process referenced in the past T

seconds

• How does the OS pick T?
– 1 page fault = 10msec
– 10msec = 2 million instructions

 => T needs to be a whole lot bigger than 2 million instructions.
– What happens if T is too small? too big?

31

Computer Science Lecture 14, page Computer Science

Working Set Determination

CS377: Operating Systems 32

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Per-process Replacement
• Working sets are expensive to compute => track page fault

frequency of each process instead
– If the page fault frequency > some threshold, give it more page frames.
– If the page fault frequency < a second threshold, take away some page

frames

• Goal: the system-wide mean time between page faults should be
equal to the time it takes to handle a page fault.
– May need to suspend a process until overall memory demands decrease.

33

Computer Science Lecture 14, page Computer Science

Page-fault Frequency Scheme

• Advantages: Thrashing is less likely as process only
competes with itself. More consistent performance
independent of system load.

• Disadvantages: The OS has to figure out how many
pages to give each process and if the working set size
grows dynamically adjust its allocation.

CS377: Operating Systems 34

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Page Sizes
• Reasons for small pages:

– More effective memory use.
– Higher degree of multiprogramming possible.

• Reasons for large pages:
– Smaller page tables
– Amortizes disk overheads over a larger page
– Fewer page faults (for processes that exhibit locality of references)

• Page sizes are growing because:
– Physical memory is cheap. As a result, page tables could get huge with

small pages. Also, internal fragmentation is less of a concern with abundant
memory.

– CPU speed is increasing faster than disk speed. As a result, page faults
result in a larger slow down than they used to. Reducing the number of page
faults is critical to performance.

35

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Summary of Page Replacement Algorithms

• Unix and Linux use variants of Clock, Windows NT uses FIFO.
• Experiments show that all algorithms do poorly if processes have

insufficient physical memory (less than half of their virtual
address space).

• All algorithms approach optimal as the physical memory allocated
to a process approaches the virtual memory size.

• The more processes running concurrently, the less physical
memory each process can have.

• A critical issue the OS must decide is how many processes and
the frames per process that may share memory simultaneously.

36

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Summary
Benefits of demand paging:
• Virtual address space can be larger than physical address space.
• Processes can run without being fully loaded into memory.

– Processes start faster because they only need to load a few pages (for code
and data) to start running.

– Processes can share memory more effectively, reducing the costs when a
context switch occurs.

• A good page replacement algorithm can reduce the number of
page faults and improve performance

37

Computer Science Lecture 14, page Computer Science CS377: Operating Systems

Summary
• Allocating memory within a process and across processes

• Page Replacement Algorithms

• LRU approximations:
– Second Chance
– Enhanced Second Chance

• Hardware support for page replacement algorithms

• Replacement policies for multiprogramming

38

