Question 1. (20 points) State whether each of the following actions requires the OS to use kernel mode or whether user mode is sufficient. If kernel mode is required, explain why.

- 1. Reading the current system time.
- 2. Starting a new process.
- 3. Multiplying two floating point numbers stored in an application's memory.
- 4. Writing the results of the multiplication to a temporary log file on disk.

Question 2. (10 points) Explain the purpose of a system call. Describe how control passes to the kernel when executing a system call.

Question 3. (10 pts) Give an example of an architectural feature that is necessary for **correctness** and another feature that is only for **performance**. Explain why.

Question 4. (10 pts) Compare and contrast a monolithic kernel design with a microkernel design. What are the relative advantages and disadvantages of each approach?

Question 5. (15 pts) What happens during a context switch? Do we want our OS to perform many or few context switches? Explain your answer.

Question 6. (15 pts) Write down the list of process state transitions that occur during the following program. You may assume that this is the only process that the CPU is executing.

```
int i = 1;
while (i < 100) { i++; }
printf("%d ", i);
while (i > 0) { i--; }
printf("%d ", i);
```

Question 7. (20 pts) Consider the following piece of code:

```
int child = fork();
int c = 5;
if (child == 0) {
    c += 5;
} else {
    child = fork();
    c += 10;
    if (child) {
        c += 10;
    }
}
// do something with c
```

- a. How many copies of the variable c are created by this program? What are their values?
- b. Describe the hierarchical process tree that is created from running this program. You can assume that all processes have not yet exited.