
Sean Barker

Recap: Deadlocks

! Necessary conditions
• Mutual exclusion
• Hold and Wait
• No Preemption
• Circular Wait

! Deadlock prevention
! Deadlock detection
! Deadlock avoidance

1

Sean Barker

Resource Allocation Graph

2

t4 is requesting r3
r3 is assigned to t2

Sean Barker

Allocation Example

3

maximum current could request

t1 4 3 1

t2 8 4 4

t3 12 4 8

Safe state?

3 threads sharing 12 disks (11 currently used)

Sean Barker

Allocation Example (cont)

4

maximum current could request

t1 4 3 1

t2 8 4 4

t3 12 5 7

Safe state?

t3 requests last disk (now all 12 used)

Sean Barker

Deadlock Avoidance with RA Graph

5

r3 is assigned to t2
t4 is requesting r3

t3 might request r2

Sean Barker

Banker’s Algorithm

6

Sean Barker

Banker’s Algorithm: Data

7

class ResourceManager {

 int n; // # threads 0 to n

 int m; // # resources 0 to m

 avail[m], // # of available resources of each type

 max[n,m], // # of resources that each thread may need

 alloc[n,m], // # of each resource that each thread is using

 need[n,m], // # of resources that each thread might still

 // request (i.e., max - alloc)

Sean Barker

Banker’s Algorithm: Allocation

8

public void synchronized allocate(int request[m], int i) {

 // thread i wants request[m] new resources

 if (request > need[i]) // vector comparison

 error(); // Can't request more than you declared

 else while (request[i] > avail)

 wait(); // Insufficient resources available

 // enough resources exist, see if would lead to unsafe state

 avail = avail - request; // vector operations

 alloc[i] = alloc[i] + request;

 need[i] = need[i] - request;

 while (!safeState()) {

 // if this is an unsafe state, undo the allocation and wait

 <undo the changes to avail, alloc[i], and need[i]>

 wait();

 <redo the changes to avail, alloc[i], and need[i]>

 }

}

Sean Barker

Banker’s Algorithm: Safety Check

9

private boolean safeState() {

 boolean work[m] = avail[m]; // accommodate all resources

 boolean finish[n] = false; // none finished yet

 // find a process that can complete its work now

 while (find i such that !finish[i]

and need[i] <= work) { // vector operations

 work = work + alloc[i];

 finish[i] = true;

 }

 return (finish[i] for all i);

}

Sean Barker

Banker’s Algorithm: Example

10

Max Allocation Available

A B C A B C A B C

P0 0 0 1 0 0 1 –

P1 1 7 5 1 0 0 –

P2 2 3 5 1 3 5 –

P3 0 6 5 0 6 3 –

Total 2 9 9 1 5 2

Sean Barker

Banker’s Algorithm: Example 2

11

Max Allocation Available

A B C A B C A B C

P0 0 0 1 0 0 1 –

P1 1 7 5 1 5 2 –

P2 2 3 5 1 3 5 –

P3 0 6 5 0 6 3 –

Total 2 14 11 1 0 0

