Lab 7: Sierpinski’s Gasket!
CSCI 1101B — Fall 2014
Due:
November 30 @ 10 pm (Monday lab)
December 1 @ 10 pm (Tuesday lab)

Objective: To gain experience using recursion.

Interesting geometric patterns can be produced by drawing smaller and smaller copies of
a shape inside an initial copy of that shape. One such pattern is called Sierpinski’s Gasket,
which you will draw in this week’s lab:

Because this pattern is going to be constructed recursively, you will need to design
a class with a recursive constructor (and a recursive move method). We will call this the
ComplexTriangle class. One way to think about constructing this recursively is to draw the
outermost triangle (given its vertices) and then construct three smaller ComplexTriangles
inside that triangle: one at the top, one at the lower left, and one at the lower right. Thus,
the ComplexTriangle class will need instance variables for the lines composing the outer
triangle as well as instance variables for the three ComplexTriangles inside. Besides the
constructor, the only other methods that will be needed are a move method and a helper
method getMidpoint (described below).

The constructor will take parameters for the vertices of the triangle (in the order left,
right, and top) and the drawing canvas. It should first draw lines between the vertices
to form a triangle. Then, if the bottom edge of this triangle is long enough (say, with
length strictly greater than 5 pixels), it should construct three more ComplexTriangles
inside this triangle. To create the smaller triangles, you should find the midpoints of each
of the sides of the triangle just drawn and then create a ComplexTriangle in the top,
lower-left, and lower-right portions of the triangle (leaving the middle blank). If the edge
of the outer triangle is not long enough, then the constructor should not make the three
ComplexTriangles.

! Adapted from a lab provided with Java: An Eventful Approach, K. Bruce, A. Danyluk, and T. Murtagh



To avoid writing duplicate code to find a midpoint three times (for the three edges of the
outer triangle), you should write a helper method called getMidpoint that is sent a Line
and returns the midpoint of that line (i.e., a Location). To help in writing this method,
you can use the getStart and getEnd methods of the Line class to get the start and end
Locations of the line, respectively.

You should also write a move method that moves the lines forming the triangle as well
as the contained ComplexTriangles.

I have provided you with an Events class and the bare skeleton of a ComplexTriangle
class in the starter project. The begin method constructs a new ComplexTriangle object.
The onMousePress and onMouseDrag methods use the move method that you will write in
your ComplexTriangle class to drag the ComplexTriangle around, even when the mouse is
not inside the ComplexTriangle (because there’s no straightforward way to check whether
the user clicked inside the ComplexTriangle). You should not need to modify the Events
class at all (though feel free to change the constants defining the triangle while experimenting
with your program).

Tips

e To start out, it is often a good idea to do a simpler version of the problem. For
example, first have the constructor of ComplexTriangle just draw a simple triangle
out of lines. Then try drawing only the ComplexTriangle in the top part of the
triangle. Then add the lower right ComplexTriangle, then finally add the triangle in
the lower left portion.

e You will find the distanceTo method defined in the Location class useful in deter-
mining whether to draw the inner triangles. If you have a Location object, you can
call this method along with a Location object argument, and the result will be a
double indicating the distance between the two locations; for example:

Location x = new Location(20, 50);
Location y = new Location(65, 150);
double distanceXY = x.distanceTo(y);

e If you are not careful in writing your program, you may get a StackOverflowError
when you run the program. This will occur if your program continues to construct
ComplexTriangles without ever terminating. You should avoid this by making sure
your ComplexTriangle constructor stops creating ComplexTriangles at some point.

Submitting Your Work

Submit your compressed lab folder (named using your user ID) in the usual way on Black-
board. Remember to put your name in your ComplexTriangle class file and fill in all
missing documentation (e.g., method and program summaries).



