Lab 6: Cryptography
CSCI 1101B — Fall 2014

Due (note extra days!):
November 19 (Monday lab)
November 20 (Tuesday lab)

Objective: To gain experience using Strings.

The Scenario: You have a message you would like to send to someone else so
that no one else can read it. Cryptography provides a solution to this problem (and
many others like it) in which data must be protected from access by unauthorized
parties. Cryptography (and security in general) is an important issue in many areas
of computing, such as allowing you safe access to websites that require you to supply
a username and password.

In this lab, you will design a program that implements a very simple cryptographic
method known as the Caesar cipher, named after Julius Caesar who (supposedly)
used it to communicate with his generals. In this type of cipher, letters are simply
shifted a fixed number of letters. For example, if the shift amount were 3 (as in the
illustration below), A would become D, B would become E, C would become F, etc.
Note that if the letter being encrypted is shifted beyond the end of the alphabet,
this technique “wraps around” and continues the shift from the beginning if the
alphabet, e.g., Y shifted by 3 would become B.

In order to decrypt a message (i.e., recover the original message from the encrypted
message), you would need to know the shift amount and then apply the cipher
in reverse to the encrypted message. Of course, you could pretty easily break this
particular cryptographic method by just trying every possible shift amount until you
guessed the correct number, which is why real systems use much more sophisticated
encryption methods than the Caesar cipher. But this remains a useful exercise in
the basic principle of cryptography!

AIB|C|D|E|F

Program Behavior

The window when your program first starts should look like this (font size = 24):

8 00 panel0
File

Click to load message

Shift = 0

The behavior of the program should comprise three phases:

1. Loading the (unencrypted) input message.

2. Setting the shift number (how many places to shift each letter during encryp-
tion).

3. Encrypting the input message using the Caesar cipher.

Clicking on the “Click to load message” text will read the input (unencrypted)
message from a text file called message.txt located in your lab folder and display
the message in the window (replacing the “Click to load message” instructions
with “Message: secret message here”, if message.txt contains “secret message
here”). The message should contain only upper-case letters and spaces and should
not be empty (i.e., *” is not a valid input message). If the message does not comply
with these rules, loading the message should simply display the error message “In-
valid input, try again” and allow the user to load the message again by clicking
on the text, thus allowing the user to first fix the contents of the message. txt file.

Once the user has loaded a (valid) message, the program should allow the user to set
the shift number. Initially, the shift number is zero (i.e., no encryption). Clicking
on the Shift message will increment the counter once per click, up to a maximum
shift amount of 25.

Once the shift counter is at least 1, clicking on the “Message: ...” text should
start encryption. Once encryption has started, pressing on the shift counter should
no longer have any effect. Each click on the message text should encrypt a single

letter, starting with the first letter, and display the updated, partially encrypted
message with each click. Spaces should be encrypted as question marks rather than
shifted. As mentioned above, if the shift of a letter would take it beyond Z, it should
“wrap around,” i.e. go back to the beginning of the alphabet and continue counting
from there. For example, if we were encoding an X with the shift of 5, it would be
encrypted as a C.

Once the message has been completely encrypted, pressing anywhere should do
nothing.

Refer to the example sequence of program states at the end of the handout.

Getting Input

So far we have not read textual input from the user. In this lab, we need to read
a message from a text file. This is easy to do using the built-in Scanner and File
classes. To use these classes, first add these two lines to your import statements:

import java.util.Scanner;
import java.io.File;

Then, to read the first line of the file called message . txt as a String variable called
input, you can simply do the following:

String input = new Scanner(new File("message.txt")).nextLine();

You can assume that the entire message to encrypt is contained in the first line of
the input file (i.e., don’t worry about files containing multiple lines).

However, one potential issue we have to deal with is that the file message.txt may
be missing, in which case we will not be able to read it. Java provides a feature
called exceptions to deal with these kinds of unexpected situations. While you do
not need to understand the details of exceptions here, you will need to wrap your
file reading in a try/catch block like this:

String input = "";
try {

input = new Scanner(new File("message.txt")).nextLine();
} catch (Exception e) {

// could not read message.txt

b
// now do something with input

In the above code, your program will try to read the message.txt file, and if it
fails (likely due to the file being missing), then the code inside the catch block will
execute. If that happens, then the input variable will not get assigned the message,
which is why we need to give the input variable a default value (above, simply the
empty string “7).

If your program cannot read the message.txt file, then you should simply show the
standard error message “Invalid input, try again”, the same as if you could read
the message but it was invalid.

Program Structure

Most of the code of your program will go in the onMousePress method, since clicking
is what drives the behavior of your program. However, you should write an extra
method called isCorrectFormat that will assist by checking whether the input
message is valid. The isCorrectFormat should be sent a String object and return
true if that String is in the correct format (only upper-case letters and spaces and
has at least one character) and false otherwise.

This method will be called from within your onMousePress method. While you could
simply write the code of the isCorrectFormat method directly inside onMousePress,
writing this code inside a separate method cleanly separates components of your
program, makes it easy to reuse the isCorrectFormat method, and simplifies the
onMousePress method. This type of method is called a helper method, since it is
designed to be used by other methods in the same class (the Events class, in this
case), rather than called externally from other classes.

Helper methods are written in exactly the same way as all the methods we’ve written
so far, except that they are marked private instead of public (i.e., the first word in
the method declaration), which simply indicates that the method can only be called
from within the same class. Note that instance variables are all marked private
as well, since instance variables are also only accessed from within the class itself
(you cannot refer to an instance variable of another class because they are labeled
private).

Tips

Remember that each character of a String is represented by a char primitive, which
is really just a number that identifies that character. For example, the number 5
might represent a capital A, the number 6 might represent a capital B, and so forth.
Thus, to shift a char variable using the Caesar cipher, you can just add the shift
amount to the char variable (though you will need to account for the wrapping
behavior as well).

However, one issue is that whenever you perform arithmetic on a char variable (e.g.,
adding an int value to a char value, or even adding two char values together), Java
transforms the result into an int. What this means is that if c1 and c2 are char
variables and you write something like this:

// shift cl by c2 places and store the shifted character into c3
char c3 = cl1 + c2;

you will get a compiler error complaining about trying to store an int expression in
a char variable. To fix this, you need to force Java to treat the right-side expression
as a char by casting it to the appropriate type:

// force Java to treat (cl + c2) as a char instead of an int
char c¢3 = (char) (cl + c2);

In the above example, we are computing the value c1 + c¢2 (which is an int) and
then forcing Java to treat the summed expression as a char expression.

Remember that a char primitive is specified using single-quotes, instead of double-
quotes which are only used for Strings:

char ¢ = ‘?’; // this is a char (NOT a String)
String s = "?"; // this is a one-character String (NOT a char)
char c2 = "?"; // this is invalid, cannot store a String in a char!

Submitting Your Work

Please submit the program in the usual way via Blackboard. Remember that we
need your whole project folder (the one with the name composed of your login ID
and lab number) and it must be compressed.

Please include a sample message.txt file in your submission (the contents can be
any reasonably short message).

Example Program Sequence

800 panel0 800 panel0
File File
Message: MEET ME AT NOON Message: MEET ME AT NOON
Shift = 0 Shift = 5
1. After loading the message 2. After clicking on Shift five times
800 panel0 800 panel
File File
Message: RJT ME AT NOON Message: RIJY?RIZFY?STTS
Shift = 5 Shift = 5

3. After clicking on Message three times 4. After encrypting the rest of the message

