
Lab 3
Sorting Laundry
CS 1101B – Fall 2014

Due:
October 5, 10 pm (Monday lab)
October 6, 10 pm (Tuesday lab)

For this lab, I would like you to write a laundry sorting simulator.

It is usually a good practice to develop programs incrementally. Start with a
simplified version of the full problem. Plan, implement, and test a program for
this simplified version. Then, add more functionality until you have solved the full
problem.

To encourage this approach, I have divided this lab into two parts. For the
first, I will describe a laundry sorter with a very simple interface. You should plan,
implement, and test a program for this problem first. Then, in the second part of
the assignment I will ask you to add additional functionality.

You should approach each of our two parts in this step-wise fashion. For example,
in the first part you might begin by just writing the instructions to construct the
necessary graphical objects without worrying about any of the mouse event handling.
Once your program can draw the picture, you can move on to figure out how to
handle events.

NOTE: Part 2 asks you to change/improve some of the things you did
in Part 1. You only need to turn in the version of the laundry sorter that
you create in Part 2.

Part 1

The simulator should begin with three wash baskets on the screen (for our purposes
they can just be rectangles or squares). One is labeled “whites”, one “darks”, and
the last “colors”. An image showing the kind of display I have in mind appears in
Figure 1.

When the simulation begins, a square of random color (i.e., a piece of clothing)
will appear on the screen. The user should then click in the corresponding basket.
If the user is correct, the program should randomly select a new color for the next
item and display it on the screen. If the user clicks on an incorrect basket, the
original item remains in position for another try.

What does “correct” mean? You should base this on the sum of the three color
components in the random color. If the sum of the component numbers is less

1



than 230, it is dark, if it is greater than 600, it is white. Otherwise, it is colored.
(Remember: named constants!)

A Warning! One odd feature of the simple interface that may bother you a bit
is a result of the fact that the program selects laundry items randomly. Because the
selection is truly random it sometimes picks the same color twice in a row. When
this happens and you click on the correct basket for the first item you will get the
feeling that the program ignored you. Even though it has actually displayed a new
item, the new item looks just like the old one, so you may think nothing changed.
Don’t let this trick you into thinking that your version of the program isn’t working
correctly. The more advanced interface in Part 2 includes counters in the display
that make it clearer whether the user succeeded.

Design of Part 1. You will need to design a program that will display the wash
baskets and the item to be sorted. The picture should look more or less like the one
above. Don’t worry if your labels aren’t perfectly centered in the baskets.

When the program begins, place all the wash baskets (with labels) on the screen.
Then, add the item of clothing that is to be sorted. You can, but don’t need to,
let the first item always have color white. The item should actually consist of two
rectangles, a FilledRect which is the appropriate color and a black FramedRect

which is the same size, but lays on top of the filled rectangle to form a border
(otherwise it will be awfully difficult to see a white item!)

Think Constants! When you lay out the wash baskets and item, make up
constants (private static final ...) for all the relevant information. This will
make it easier to change things around and also make your program much, much
easier to read (presuming you give constants good names). Remember, constant
names are by convention written with all capital letters and underscores. Your
constants may be (and often should be) more complex objects like Locations. You
can initialize constants with the results of a constructor:

private static final Location SOME_LOCN = new Location(100,200);

The widths and heights of wash baskets and the item to be sorted, coordinates
of the upper left corner of each of these, etc., are all good candidates for named
constants.

After writing the code to draw the initial display, it would be good to run it to
see if it does what you expect.

Next, you should write the code for the method onMousePress (or onMouseClick
if you prefer) that checks to see if the user selected the right basket and, if they did,

2



generates a new color for the piece of clothing.

Recycling: Because your program only uses one laundry item at a time, you
should just recycle it, i.e. use the same rectangle for each laundry item instead of
creating a new rectangle each time you want to make a new piece of laundry. Simply
change its color. In general, you should reuse objects rather than creating new ones
when possible, as this generally uses less time and does not clutter memory.

Part 2:

Once you get the basic version working, I would like you to add some additional
features:

1. Add labels (Text items) at the bottom of the picture showing the number of
correct and incorrect placements. This makes it clearer when the user succeeds
in placing the item correctly. They should read something like “correct =
nn”, “incorrect = mm”. The value in the first Text item will be formed by
concatenating the string “correct = ” with an integer instance variable which
keeps track of the number of correct answers. The other is similar. When
your program starts, the window should look like Figure 1. After the user has
sorted some laundry, your window should look something like Figure 2.

2. Users should drag the items to the correct laundry basket rather than just
clicking on the basket. Since, when the user drags the item, the arrow should
remain pointing to the spot it was pointing to when the mouse was clicked
(instead of jumping to the upper-left corner), you will need an instance variable
to label the last mouse position before the drag so you can determine how far
to drag the item using the move() method. If the user presses the mouse
button down outside the laundry item, it should not increase the correct or
the incorrect counter.

3. Notice that, as described so far, if the user drops their laundry outside of all
baskets, it will count as an incorrect sorting. Be nicer. If the user drops
the laundry outside any basket, it should automatically move back
to the position it started from and you should not increase either
counter.

4. Finally, if the user tries to place the item in an incorrect basket, you should
display the color “coordinates” and the color thresholds (what color element
sums correspond to darks, colors, and whites) in the lower part of the window.
See Figure 3. This information should not appear if they drop the item outside
of any basket. Of course, this information should disappear as soon as they
drag the item to the correct basket.

3



Note that for the second enhancement you need to replace the onMousePress

method with the three methods:

• onMousePress, for when the user first clicks on the item (though remember
that they might miss),

• onMouseDrag, to do the actual dragging, and

• onMouseRelease, to check to see where they’ve dropped the item and do the
appropriate thing.

Final remarks. Try to complete the basic version of the lab before attempting
the more advanced features. Just work on adding one feature at a time, testing each
thoroughly before working on the next.

Submitting Your Work

Before submitting your lab, read over your program and make sure it follows the
guidelines described in the Java programming guide handouts (e.g., correct inden-
tation, use of comments, named constants, etc).

As in previous weeks, you should submit your entire project folder as a single
zip archive via Blackboard. If you need a refresher on how to create this archive,
refer to the previous lab handouts. Also as in previous weeks, you should keep a
copy of your lab in a safe place (e.g., in your folder on the microwave server) after
you are done working on it so that you can easily refer to it later.

4



Figure 1: Starting laundry window.

5



Figure 2: Laundry window in progress.

6



Figure 3: Laundry window after user selects the wrong basket.

7


