
Sean Barker

Content Distribution

1

Sean Barker

Client Distance

2



Sean Barker

Content Distribution Network (CDN)

3

Sean Barker

Proxy Server (Forward Proxy)

4



Sean Barker

Reverse Proxy

5

CDN Server Origin Server

Sean Barker

CoDeeN Architecture

6

Client

CoDeeN Node
As Fwd Proxy

Client

CoDeeN Node
As Fwd Proxy

Client

CoDeeN Node
As Fwd Proxy

CoDeeN Node
Reverse Proxy

CoDeeN Node
Reverse Proxy

Content Provider
(origin server)

Content Provider
(origin server)

Figure 1: CoDeeN architecture – Clients configure their
browsers to use a CoDeeN node, which acts as a forward-mode
proxy. Cache misses are deterministically hashed and redirected
to another CoDeeN proxy, which acts as a reverse-mode proxy,
concentrating requests for a particular URL. In this way, fewer
requests are forwarded to the origin site.

Although some previous research has simulated
caching in decentralized/peer-to-peer systems [13, 26],
we believe that CoDeeN is the first deployed system, and
one key insight in this endeavor has been the observation
that practical reliability is more difficult to capture than
traditional fail-stop models assume. In our experience,
running CoDeeN on a small number of PlanetLab nodes
was simple, but overall system reliability degraded sig-
nificantly as nodes were added. CoDeeN now runs on
over 100 nodes, and we have found that the status of these
proxy nodes are much more dynamic and unpredictable
than we had originally expected. Even accounting for the
expected problems, such as network disconnections and
bandwidth contention, did not improve the situation. In
many cases, we found CoDeeN unsuccessfully compet-
ing with other PlanetLab projects for system resources,
leading to undesirable behavior.
The other challenging aspect of CoDeeN’s design, from

a management standpoint, is the decision to allow all
nodes to act as “open” proxies, accepting requests from
any client in the world instead of just those at organiza-
tions hosting PlanetLab nodes. This decision makes the
system more useful and increases the amount of traffic
we receive, but the possibility of abuse also increases the
chances that CoDeeN becomes unavailable due to nodes
being disconnected. However, we overestimated how long
it would take for others to discover our system and under-
estimated the scope of activities for which people seek
open proxies. Within days of CoDeeN becoming stable
enough to stay continuously running, the PlanetLab ad-
ministrators began receiving complaints regarding spam,
theft of service, abetting identity theft, etc.
After fixing the discovered security-related problems,

CoDeeN has been running nearly continuously since
June 2003. In that time, it has received over 300 mil-
lion requests from over 500,000 unique IP addresses (as
of December 2003), while generating only three com-

plaints. Node failure and overload are automatically de-
tected and the monitoring routines provide useful infor-
mation regarding both CoDeeN and PlanetLab. We be-
lieve our techniques have broader application, ranging
from peer-to-peer systems to general-purpose monitoring
services. Obvious beneficiaries include people deploying
open proxies for some form of public good, such as shar-
ing/tolerating load spikes, avoiding censorship, or pro-
viding community caching. Since ISPs generally employ
transparent proxies, our techniques would allow them to
identify customers abusing other systems before receiv-
ing complaints from the victims. We believe that any dis-
tributed system, especially those that are latency-sensitive
or that run on non-dedicated environments, can benefit
from our infrastructure for monitoring and avoidance.
The rest of the paper is organized as follows. In Sec-

tion 2, we discuss system reliability and CoDeeN’s moni-
toring facilities. We discuss the security problems facing
CoDeeN in Section 3, followed by our remedies in Sec-
tion 4. We then show some preliminary findings based on
the data we collected and discuss the related work.

2 Reliability and Monitoring
Unlike commercial CDNs, CoDeeN does not operate on
dedicated nodes with reliable resources, nor does it em-
ploy a centralized Network Operations Center (NOC) to
collect and distribute status information. CoDeeN runs
on all academic PlanetLab sites in North America, and,
as a result, shares resources with other experiments.1
Such sharing can lead to resource exhaustion (disk space,
global file table entries, physical memory) as well as con-
tention (network bandwidth, CPU cycles). In such cases,
a CoDeeN instance may be unable to service requests,
which would normally lead to overall service degrada-
tion or failure. Therefore, to maintain reliable and smooth
operations on CoDeeN, each instance monitors system
health and provides this data to its local request redirector.
In a latency-sensitive environment such as CoDeeN,

avoiding problematic nodes, even if they (eventually) pro-
duce a correct result, is preferable to incurring reliability-
induced delays. Even a seemingly harmless activity such
as a TCP SYN retransmit increases user-perceived la-
tency, reducing the system’s overall utility. For CoDeeN
to operate smoothly, our distributed redirectors need to
continually know the state of other proxies and decide
which reverse proxies should be used for request redirec-
tion. In practice, what this entails is first finding a healthy
subset of the proxies and then letting the redirection strat-
egy decide which one is the best. As a result, CoDeeN in-
cludes significant node health monitoring facilities, much
of which is not specific to CoDeeN and can be used in
other latency-sensitive peer-to-peer environments.

1Resource protection in future PlanetLab kernels will mitigate some
problems, but this feature may not exist on non-PlanetLab systems.



Sean Barker

Case Study: Akamai

7

416 CHAPTER 7. CONSISTENCY AND REPLICATION

contains the host name of the origin server for reasons we explain next. The
modified URL is resolved as follows, as is also shown in Figure 7.35.

Figure 7.35: The principal working of the Akamai CDN.

The name of the virtual ghost includes a DNS name such as ghosting.com,
which is resolved by the regular DNS naming system to a CDN DNS server
(the result of step 3). Each such DNS server keeps track of servers close
to the client. To this end, any of the proximity metrics we have discussed
previously could be used. In effect, the CDN DNS servers redirect the client
to a replica server best for that client (step 4), which could mean the closest
one, the least-loaded one, or a combination of several such metrics (the actual
redirection policy is proprietary).

Finally, the client forwards the request for the embedded document to
the selected CDN server. If this server does not yet have the document, it
fetches it from the original Web server (shown as step 6), caches it locally,
and subsequently passes it to the client. If the document was already in the
CDN server’s cache, it can be returned forthwith. Note that in order to fetch
the embedded document, the replica server must be able to send a request
to the origin server, for which reason its host name is also contained in the
embedded document’s URL.

An interesting aspect of this scheme is the simplicity by which consistency
of documents can be enforced. Clearly, whenever a main document is changed,
a client will always be able to fetch it from the origin server. In the case of
embedded documents, a different approach needs to be followed as these
documents are, in principle, fetched from a nearby replica server. To this end,
a URL for an embedded document not only refers to a special host name that
eventually leads to a CDN DNS server, but also contains a unique identifier
that is changed every time the embedded document changes. In effect, this
identifier changes the name of the embedded document. As a consequence,

DS 3.02 downloaded by SBARKER@BOWDOIN.EDU


