
Sean Barker

P2P Comparison

1

18 CHAPTER 2. BACKGROUND

Centralization Query Model Scalability Overhead

Napster High; central server Direct server lookup High Low

Kazaa Moderate; SuperNodes Query flooding Moderate Moderate

Gnutella Low (pre-UltraPeers) Query flooding Low Low

BitTorrent Moderate; trackers N/A High Moderate

DHT Low Direct lookup (exact) High High

Table 2.1: Overview of P2P network paradigms.

network – many torrent files point to old networks that have gone dormant and no longer have any
uploaders sharing the file. This means that finding a network with enough (or any) uploaders to
obtain a file may be more di�cult than simply making a Google search and downloading the first
torrent file found.

2.2.5 DHTs

One final type of system that bears mention is a Distributed Hash Table (or DHT). DHTs, while
not complete P2P systems in the same manner as the others described here, are distributed lookup
tables that can serve as backbones for P2P networks, performing e�cient O(log n) file lookups across
data distributed amongst the nodes in a network. DHTs typically organize their nodes in a structure
that indexes a subset of the other nodes and allows particular pieces of information to be retrieved
without traversing most of the network. DHTs themselves are an active field of research with many
well-known and highly studied systems such as Chord [31], CAN [24], and Pastry [27].

DHTs have also been proposed for use in P2P systems. Some BitTorrent clients possess ‘track-
erless’ operation modes in which a DHT is used in order to allow the network to function without
a tracker [18]. However, the use of DHTs in P2P systems is far from an ideal solution. Chawathe
et al [7] outline several of the problems of using DHTs in a P2P network. One issue is the high
degree of churn in a typical P2P network. Since DHTs are highly structured, there is significant
overhead incurred when nodes are added or removed from the network. In a typically P2P network,
peers are frequently entering and leaving, and this will imposes a significant maintenance burden
if a DHT is in use. Another issue is that while DHTs perform exact match queries very well, they
generally cannot perform keyword searches. Users will often not know the exact file they wish to
locate, so the sacrifice of keyword searches is seriously detrimental to the network. Also note that
in the specific example of BitTorrent, DHTs also do not alleviate the problem of needing to find a
torrent file before joining the network. Finally, [7] argues that since most requests in P2P systems
are for highly replicated files, precise DHT lookups are unnecessary.

An overview of the properties and tradeo↵s of each of these network types is given in Table 2.1.
While there are many specific P2P networks other than the ones listed, we feel that the 5 discussed
above typify the majority of P2P systems in use today.

Sean Barker

P2P Lookup

2

2

7"

How to find data in a distributed file sharing system?"

“Lookup” is the key problem!"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client" ?"

Motivation"

Slide content based on material from Daniel Figueiredo and Robert Morris" 8"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

DB"

Central server (Napster)"

Centralized Solution"

9"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

Flooding (Gnutella, Morpheus, etc.)"

Distributed Solution (1)"

10"

Routed messages (Freenet, Tapestry, Chord, CAN, etc.)"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

Distributed Solution (2)"

11"

Routing Challenges"

•  What makes routing “lookup messages” hard"
•  Define a useful “key nearness” metric ""
•  Keep the hop count small"

•  Keep the routing tables “right size”"

•  Stay robust despite rapid changes in membership"

•  Chord: emphasizes efficiency and simplicity"

12"

Chord Overview"

•  Provides peer-to-peer hash lookup service (basically
a distributed index):"
•  Lookup(key) → IP address"
•  Note: Chord does not store the data being looked up!"

•  How does Chord locate a node?"
•  How does Chord maintain routing tables? "

•  How does Chord cope with changes in membership?"

Sean Barker

Centralized Lookup

3

2

7"

How to find data in a distributed file sharing system?"

“Lookup” is the key problem!"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client" ?"

Motivation"

Slide content based on material from Daniel Figueiredo and Robert Morris" 8"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

DB"

Central server (Napster)"

Centralized Solution"

9"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

Flooding (Gnutella, Morpheus, etc.)"

Distributed Solution (1)"

10"

Routed messages (Freenet, Tapestry, Chord, CAN, etc.)"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

Distributed Solution (2)"

11"

Routing Challenges"

•  What makes routing “lookup messages” hard"
•  Define a useful “key nearness” metric ""
•  Keep the hop count small"

•  Keep the routing tables “right size”"

•  Stay robust despite rapid changes in membership"

•  Chord: emphasizes efficiency and simplicity"

12"

Chord Overview"

•  Provides peer-to-peer hash lookup service (basically
a distributed index):"
•  Lookup(key) → IP address"
•  Note: Chord does not store the data being looked up!"

•  How does Chord locate a node?"
•  How does Chord maintain routing tables? "

•  How does Chord cope with changes in membership?"

Sean Barker

Flooding

4

2

7"

How to find data in a distributed file sharing system?"

“Lookup” is the key problem!"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client" ?"

Motivation"

Slide content based on material from Daniel Figueiredo and Robert Morris" 8"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

DB"

Central server (Napster)"

Centralized Solution"

9"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

Flooding (Gnutella, Morpheus, etc.)"

Distributed Solution (1)"

10"

Routed messages (Freenet, Tapestry, Chord, CAN, etc.)"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

Distributed Solution (2)"

11"

Routing Challenges"

•  What makes routing “lookup messages” hard"
•  Define a useful “key nearness” metric ""
•  Keep the hop count small"

•  Keep the routing tables “right size”"

•  Stay robust despite rapid changes in membership"

•  Chord: emphasizes efficiency and simplicity"

12"

Chord Overview"

•  Provides peer-to-peer hash lookup service (basically
a distributed index):"
•  Lookup(key) → IP address"
•  Note: Chord does not store the data being looked up!"

•  How does Chord locate a node?"
•  How does Chord maintain routing tables? "

•  How does Chord cope with changes in membership?"

Sean Barker

Routed Messages

5

2

7"

How to find data in a distributed file sharing system?"

“Lookup” is the key problem!"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client" ?"

Motivation"

Slide content based on material from Daniel Figueiredo and Robert Morris" 8"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

DB"

Central server (Napster)"

Centralized Solution"

9"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

Flooding (Gnutella, Morpheus, etc.)"

Distributed Solution (1)"

10"

Routed messages (Freenet, Tapestry, Chord, CAN, etc.)"

Internet"

Publisher"
Key=“LetItBe”"

Value=MP3 data"

Lookup(“LetItBe”)"

N1"

N2" N3"

N5"N4"
Client"

Distributed Solution (2)"

11"

Routing Challenges"

•  What makes routing “lookup messages” hard"
•  Define a useful “key nearness” metric ""
•  Keep the hop count small"

•  Keep the routing tables “right size”"

•  Stay robust despite rapid changes in membership"

•  Chord: emphasizes efficiency and simplicity"

12"

Chord Overview"

•  Provides peer-to-peer hash lookup service (basically
a distributed index):"
•  Lookup(key) → IP address"
•  Note: Chord does not store the data being looked up!"

•  How does Chord locate a node?"
•  How does Chord maintain routing tables? "

•  How does Chord cope with changes in membership?"
Sean Barker

Identifier Circle

6

3

13"

Chord Properties"

•  Efficient: O(log(N)) messages per lookup"
•  N is the total number of servers/peers"

•  Scalable: O(log(N)) state per node"
•  Robust: survives massive failures"

•  Formal proofs are in the original 2001 paper "
•  Assume no malicious participants"

14"

•  m bit identifier space for both keys and nodes"

•  Key identifier = SHA-1(key)"

Key=“LetItBe”" ID=60"SHA-1"

IP=“137.165.10.100”" ID=123"SHA-1"

•  Node identifier = SHA-1(IP address)"

•  Both are uniformly distributed and exist in same ID space"

•  Goal: How to map key IDs to node IDs? "

Chord IDs"

15"

Consistent Hashing [Karger97]"

•  Given a set of n nodes, a consistent hash function
will map keys (e.g., filenames) uniformly across the
nodes"
•  Load balancing!"

•  Nice feature of consistent hashing for node addition:"
•  Only 1/n keys must be reassigned to new nodes who join"
"

16"

N32"

N90"

N123" K20"

K5"

Circular m-bit"
ID space"

0"

K60"

Consistent Hashing"

K101"

17"

•  A key is stored at its successor: node with next higher ID"

N32"

N90"

N123" K20"

K5"

Circular m-bit"
ID space"

0"IP=“137.165.10.100”"

K101"

K60"
Key=“LetItBe”"

Consistent Hashing"

18"

N32"

N90"

N123"

0"

Hash(“LetItBe”) =
K60"

N10"

N55"

Where is “LetItBe”? "

“N90 has K60”"

K60"

Consistent Hashing"

Advantages? Disadvantages?"

Sean Barker

Identifier Successors

7

3

13"

Chord Properties"

•  Efficient: O(log(N)) messages per lookup"
•  N is the total number of servers/peers"

•  Scalable: O(log(N)) state per node"
•  Robust: survives massive failures"

•  Formal proofs are in the original 2001 paper "
•  Assume no malicious participants"

14"

•  m bit identifier space for both keys and nodes"

•  Key identifier = SHA-1(key)"

Key=“LetItBe”" ID=60"SHA-1"

IP=“137.165.10.100”" ID=123"SHA-1"

•  Node identifier = SHA-1(IP address)"

•  Both are uniformly distributed and exist in same ID space"

•  Goal: How to map key IDs to node IDs? "

Chord IDs"

15"

Consistent Hashing [Karger97]"

•  Given a set of n nodes, a consistent hash function
will map keys (e.g., filenames) uniformly across the
nodes"
•  Load balancing!"

•  Nice feature of consistent hashing for node addition:"
•  Only 1/n keys must be reassigned to new nodes who join"
"

16"

N32"

N90"

N123" K20"

K5"

Circular m-bit"
ID space"

0"

K60"

Consistent Hashing"

K101"

17"

•  A key is stored at its successor: node with next higher ID"

N32"

N90"

N123" K20"

K5"

Circular m-bit"
ID space"

0"IP=“137.165.10.100”"

K101"

K60"
Key=“LetItBe”"

Consistent Hashing"

18"

N32"

N90"

N123"

0"

Hash(“LetItBe”) =
K60"

N10"

N55"

Where is “LetItBe”? "

“N90 has K60”"

K60"

Consistent Hashing"

Advantages? Disadvantages?"

IP=“1.2.3.4”

Sean Barker

Lookup Example

8

3

13"

Chord Properties"

•  Efficient: O(log(N)) messages per lookup"
•  N is the total number of servers/peers"

•  Scalable: O(log(N)) state per node"
•  Robust: survives massive failures"

•  Formal proofs are in the original 2001 paper "
•  Assume no malicious participants"

14"

•  m bit identifier space for both keys and nodes"

•  Key identifier = SHA-1(key)"

Key=“LetItBe”" ID=60"SHA-1"

IP=“137.165.10.100”" ID=123"SHA-1"

•  Node identifier = SHA-1(IP address)"

•  Both are uniformly distributed and exist in same ID space"

•  Goal: How to map key IDs to node IDs? "

Chord IDs"

15"

Consistent Hashing [Karger97]"

•  Given a set of n nodes, a consistent hash function
will map keys (e.g., filenames) uniformly across the
nodes"
•  Load balancing!"

•  Nice feature of consistent hashing for node addition:"
•  Only 1/n keys must be reassigned to new nodes who join"
"

16"

N32"

N90"

N123" K20"

K5"

Circular m-bit"
ID space"

0"

K60"

Consistent Hashing"

K101"

17"

•  A key is stored at its successor: node with next higher ID"

N32"

N90"

N123" K20"

K5"

Circular m-bit"
ID space"

0"IP=“137.165.10.100”"

K101"

K60"
Key=“LetItBe”"

Consistent Hashing"

18"

N32"

N90"

N123"

0"

Hash(“LetItBe”) =
K60"

N10"

N55"

Where is “LetItBe”? "

“N90 has K60”"

K60"

Consistent Hashing"

Advantages? Disadvantages?"

Sean Barker

Simple Lookup

9

4

19"

N32"

N90"

N123"

0"

Hash(“LetItBe”) = K60"

N10"

N55"

Where is “LetItBe”? "

“N90 has K60”"

K60"

•  Every node knows only its successor in the ring"

Chord: Basic Lookup"

20"

•  Every node knows up to m other nodes in the ring"
•  Increase distance exponentially"
•  m=7 in this example"

N80"
80 + 20"

N116"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

21"

•  Finger i points to successor of n+2i-1!
•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m"

N116"

N80"
80 + 20"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

N80+1" N98"

N80+2" N98"

N80+4" N98"

N80+8" N98"

N80+16" N98"

N80+32" N116"

N80+64" N18"

22"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

Lookups are Faster"

23"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

K19"

Lookups are Faster"

24"

•  Three step process:"

•  Initialize all fingers of new node"

•  Update fingers of existing nodes"

•  Transfer keys from successor to new node"

•  Less aggressive mechanism (lazy finger update):"

•  Initialize only the finger to successor node"

•  Periodically verify immediate successor, predecessor"

•  Periodically refresh finger table entries"

Joining the Ring"

Sean Barker

Chord: Finger Tables

10

4

19"

N32"

N90"

N123"

0"

Hash(“LetItBe”) = K60"

N10"

N55"

Where is “LetItBe”? "

“N90 has K60”"

K60"

•  Every node knows only its successor in the ring"

Chord: Basic Lookup"

20"

•  Every node knows up to m other nodes in the ring"
•  Increase distance exponentially"
•  m=7 in this example"

N80"
80 + 20"

N116"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

21"

•  Finger i points to successor of n+2i-1!
•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m"

N116"

N80"
80 + 20"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

N80+1" N98"

N80+2" N98"

N80+4" N98"

N80+8" N98"

N80+16" N98"

N80+32" N116"

N80+64" N18"

22"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

Lookups are Faster"

23"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

K19"

Lookups are Faster"

24"

•  Three step process:"

•  Initialize all fingers of new node"

•  Update fingers of existing nodes"

•  Transfer keys from successor to new node"

•  Less aggressive mechanism (lazy finger update):"

•  Initialize only the finger to successor node"

•  Periodically verify immediate successor, predecessor"

•  Periodically refresh finger table entries"

Joining the Ring"

Sean Barker

Finger Tables

11

4

19"

N32"

N90"

N123"

0"

Hash(“LetItBe”) = K60"

N10"

N55"

Where is “LetItBe”? "

“N90 has K60”"

K60"

•  Every node knows only its successor in the ring"

Chord: Basic Lookup"

20"

•  Every node knows up to m other nodes in the ring"
•  Increase distance exponentially"
•  m=7 in this example"

N80"
80 + 20"

N116"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

21"

•  Finger i points to successor of n+2i-1!
•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m"

N116"

N80"
80 + 20"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

N80+1" N98"

N80+2" N98"

N80+4" N98"

N80+8" N98"

N80+16" N98"

N80+32" N116"

N80+64" N18"

22"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

Lookups are Faster"

23"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

K19"

Lookups are Faster"

24"

•  Three step process:"

•  Initialize all fingers of new node"

•  Update fingers of existing nodes"

•  Transfer keys from successor to new node"

•  Less aggressive mechanism (lazy finger update):"

•  Initialize only the finger to successor node"

•  Periodically verify immediate successor, predecessor"

•  Periodically refresh finger table entries"

Joining the Ring"

4

19"

N32"

N90"

N123"

0"

Hash(“LetItBe”) = K60"

N10"

N55"

Where is “LetItBe”? "

“N90 has K60”"

K60"

•  Every node knows only its successor in the ring"

Chord: Basic Lookup"

20"

•  Every node knows up to m other nodes in the ring"
•  Increase distance exponentially"
•  m=7 in this example"

N80"
80 + 20"

N116"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

21"

•  Finger i points to successor of n+2i-1!
•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m"

N116"

N80"
80 + 20"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

N80+1" N98"

N80+2" N98"

N80+4" N98"

N80+8" N98"

N80+16" N98"

N80+32" N116"

N80+64" N18"

22"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

Lookups are Faster"

23"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

K19"

Lookups are Faster"

24"

•  Three step process:"

•  Initialize all fingers of new node"

•  Update fingers of existing nodes"

•  Transfer keys from successor to new node"

•  Less aggressive mechanism (lazy finger update):"

•  Initialize only the finger to successor node"

•  Periodically verify immediate successor, predecessor"

•  Periodically refresh finger table entries"

Joining the Ring"

Sean Barker

Chord Lookup

12

4

19"

N32"

N90"

N123"

0"

Hash(“LetItBe”) = K60"

N10"

N55"

Where is “LetItBe”? "

“N90 has K60”"

K60"

•  Every node knows only its successor in the ring"

Chord: Basic Lookup"

20"

•  Every node knows up to m other nodes in the ring"
•  Increase distance exponentially"
•  m=7 in this example"

N80"
80 + 20"

N116"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

21"

•  Finger i points to successor of n+2i-1!
•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m"

N116"

N80"
80 + 20"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

N80+1" N98"

N80+2" N98"

N80+4" N98"

N80+8" N98"

N80+16" N98"

N80+32" N116"

N80+64" N18"

22"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

Lookups are Faster"

23"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

K19"

Lookups are Faster"

24"

•  Three step process:"

•  Initialize all fingers of new node"

•  Update fingers of existing nodes"

•  Transfer keys from successor to new node"

•  Less aggressive mechanism (lazy finger update):"

•  Initialize only the finger to successor node"

•  Periodically verify immediate successor, predecessor"

•  Periodically refresh finger table entries"

Joining the Ring"

Sean Barker

Chord Lookup

13

4

19"

N32"

N90"

N123"

0"

Hash(“LetItBe”) = K60"

N10"

N55"

Where is “LetItBe”? "

“N90 has K60”"

K60"

•  Every node knows only its successor in the ring"

Chord: Basic Lookup"

20"

•  Every node knows up to m other nodes in the ring"
•  Increase distance exponentially"
•  m=7 in this example"

N80"
80 + 20"

N116"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

21"

•  Finger i points to successor of n+2i-1!
•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m"

N116"

N80"
80 + 20"

N98"

N18"

80 + 21"
80 + 22"

80 + 23"

80 + 24"

80 + 25" 80 + 26"

“Finger Tables”"

N80+1" N98"

N80+2" N98"

N80+4" N98"

N80+8" N98"

N80+16" N98"

N80+32" N116"

N80+64" N18"

22"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

Lookups are Faster"

23"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

K19"

Lookups are Faster"

24"

•  Three step process:"

•  Initialize all fingers of new node"

•  Update fingers of existing nodes"

•  Transfer keys from successor to new node"

•  Less aggressive mechanism (lazy finger update):"

•  Initialize only the finger to successor node"

•  Periodically verify immediate successor, predecessor"

•  Periodically refresh finger table entries"

Joining the Ring"

Sean Barker

Joining the Ring

14

5

25"

•  Initialize the new node’s (N36) finger table"

•  Locate any node p in the ring"

•  Ask node p to lookup fingers of new node N36"

•  Return results to new node"

N36"

1. Lookup(37,38,40,…,100,164)"

N60"

N40"

N5"

N20"
N99"

N80"

Joining the Ring - Step 1"

26"

•  Updating fingers of existing nodes"
•  New node calls update function on existing nodes"

•  Existing nodes can recursively update fingers of other nodes"

•  N36 sets successor pointer to be N40"
•  N20 sets successor pointer to be N36"

N36"

N60"

N40"

N5"

N20"
N99"

N80"

Joining the Ring - Step 2"

27"

•  Transfer keys from successor node to new node"

•  Only keys in the range are transferred "

Copy keys 21…36"
from N40 to N36"

K30"
K38"

N36"

N60"

N40"

N5"

N20"
N99"

N80"

K30"

K38"

Joining the Ring - Step 3"

•  Note: When a node leaves ring, all keys are copied to successor"

28"

•  Failure of nodes might cause incorrect lookup"

N120"

N113"

N102"

N80"

N85"

N10"

Lookup(90)"

•  N80 doesn’t know correct successor, so lookup fails"

•  What should we do?"

Handing Failures"

29"

•  Use successor list (in addition to finger table)"

•  Each node knows r immediate successors"

•  After failure, will know first live successor"

•  Correct successors guarantee correct lookups"

•  Guarantee is with some probability"

•  Can choose r to make probability of lookup failure arbitrarily small"

Handing Failures"

30"

•  Quick lookup in large systems"

•  Low variation in lookup costs"

•  Robust despite massive failure"

•  Experiments confirm theoretical results (which is always
a good thing)"

Evaluation Overview"

Sean Barker

Joining the Ring

15

5

25"

•  Initialize the new node’s (N36) finger table"

•  Locate any node p in the ring"

•  Ask node p to lookup fingers of new node N36"

•  Return results to new node"

N36"

1. Lookup(37,38,40,…,100,164)"

N60"

N40"

N5"

N20"
N99"

N80"

Joining the Ring - Step 1"

26"

•  Updating fingers of existing nodes"
•  New node calls update function on existing nodes"

•  Existing nodes can recursively update fingers of other nodes"

•  N36 sets successor pointer to be N40"
•  N20 sets successor pointer to be N36"

N36"

N60"

N40"

N5"

N20"
N99"

N80"

Joining the Ring - Step 2"

27"

•  Transfer keys from successor node to new node"

•  Only keys in the range are transferred "

Copy keys 21…36"
from N40 to N36"

K30"
K38"

N36"

N60"

N40"

N5"

N20"
N99"

N80"

K30"

K38"

Joining the Ring - Step 3"

•  Note: When a node leaves ring, all keys are copied to successor"

28"

•  Failure of nodes might cause incorrect lookup"

N120"

N113"

N102"

N80"

N85"

N10"

Lookup(90)"

•  N80 doesn’t know correct successor, so lookup fails"

•  What should we do?"

Handing Failures"

29"

•  Use successor list (in addition to finger table)"

•  Each node knows r immediate successors"

•  After failure, will know first live successor"

•  Correct successors guarantee correct lookups"

•  Guarantee is with some probability"

•  Can choose r to make probability of lookup failure arbitrarily small"

Handing Failures"

30"

•  Quick lookup in large systems"

•  Low variation in lookup costs"

•  Robust despite massive failure"

•  Experiments confirm theoretical results (which is always
a good thing)"

Evaluation Overview"

Sean Barker

Fault Tolerance

16

5

25"

•  Initialize the new node’s (N36) finger table"

•  Locate any node p in the ring"

•  Ask node p to lookup fingers of new node N36"

•  Return results to new node"

N36"

1. Lookup(37,38,40,…,100,164)"

N60"

N40"

N5"

N20"
N99"

N80"

Joining the Ring - Step 1"

26"

•  Updating fingers of existing nodes"
•  New node calls update function on existing nodes"

•  Existing nodes can recursively update fingers of other nodes"

•  N36 sets successor pointer to be N40"
•  N20 sets successor pointer to be N36"

N36"

N60"

N40"

N5"

N20"
N99"

N80"

Joining the Ring - Step 2"

27"

•  Transfer keys from successor node to new node"

•  Only keys in the range are transferred "

Copy keys 21…36"
from N40 to N36"

K30"
K38"

N36"

N60"

N40"

N5"

N20"
N99"

N80"

K30"

K38"

Joining the Ring - Step 3"

•  Note: When a node leaves ring, all keys are copied to successor"

28"

•  Failure of nodes might cause incorrect lookup"

N120"

N113"

N102"

N80"

N85"

N10"

Lookup(90)"

•  N80 doesn’t know correct successor, so lookup fails"

•  What should we do?"

Handing Failures"

29"

•  Use successor list (in addition to finger table)"

•  Each node knows r immediate successors"

•  After failure, will know first live successor"

•  Correct successors guarantee correct lookups"

•  Guarantee is with some probability"

•  Can choose r to make probability of lookup failure arbitrarily small"

Handing Failures"

30"

•  Quick lookup in large systems"

•  Low variation in lookup costs"

•  Robust despite massive failure"

•  Experiments confirm theoretical results (which is always
a good thing)"

Evaluation Overview"

Sean Barker

Evaluation: Lookup

17

6

31"

•  Cost is O(log N) as predicted by theory"

•  Constant is 1/2"

Number of Nodes"

A
ve

ra
ge

 M
es

sa
ge

s
pe

r
Lo

ok
up
"

Cost of lookup"

32"

•  Start with 1000 peers"
•  Insert 1000 key/value pairs (and replicate each 5 times)"
•  Stop X% of peers"
•  Perform 1000 lookups"

Robustness"

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40 45 50

Failed Nodes (Percent)"

Fa
ile

d
Lo

ok
up

s
(P

er
ce

nt
)"

Massive failures have little impact!"

33"

Effectiveness of Load Balancing"

34"

Path Length of Lookup"

P
at

h
le

ng
th

100000

35"

Distribution of Path Length!
(4096 nodes)"

36"

Discussion"

•  Limitations? Problems? Questions?"
•  Locality with respect to the underlying network?"

•  From Mass, first lookup goes to Australia, second to
Europe, third to Asia"

•  Even O(log n) steps too many for routing in large
networks?"

•  Single popular key mapping to a single node?"
•  What about search?"
•  How does replication fit into the picture?"

Sean Barker

Evaluation: Robustness

18

6

31"

•  Cost is O(log N) as predicted by theory"

•  Constant is 1/2"

Number of Nodes"

A
ve

ra
ge

 M
es

sa
ge

s
pe

r
Lo

ok
up
"

Cost of lookup"

32"

•  Start with 1000 peers"
•  Insert 1000 key/value pairs (and replicate each 5 times)"
•  Stop X% of peers"
•  Perform 1000 lookups"

Robustness"

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40 45 50

Failed Nodes (Percent)"

Fa
ile

d
Lo

ok
up

s
(P

er
ce

nt
)"

Massive failures have little impact!"

33"

Effectiveness of Load Balancing"

34"

Path Length of Lookup"

Pa
th

 le
ng

th

100000

35"

Distribution of Path Length!
(4096 nodes)"

36"

Discussion"

•  Limitations? Problems? Questions?"
•  Locality with respect to the underlying network?"

•  From Mass, first lookup goes to Australia, second to
Europe, third to Asia"

•  Even O(log n) steps too many for routing in large
networks?"

•  Single popular key mapping to a single node?"
•  What about search?"
•  How does replication fit into the picture?"

