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18 CHAPTER 2. BACKGROUND

Centralization Query Model Scalability Overhead

Napster High; central server Direct server lookup High Low

Kazaa Moderate; SuperNodes Query flooding Moderate Moderate

Gnutella Low (pre-UltraPeers) Query flooding Low Low

BitTorrent Moderate; trackers N/A High Moderate

DHT Low Direct lookup (exact) High High

Table 2.1: Overview of P2P network paradigms.

network – many torrent files point to old networks that have gone dormant and no longer have any
uploaders sharing the file. This means that finding a network with enough (or any) uploaders to
obtain a file may be more di�cult than simply making a Google search and downloading the first
torrent file found.

2.2.5 DHTs

One final type of system that bears mention is a Distributed Hash Table (or DHT). DHTs, while
not complete P2P systems in the same manner as the others described here, are distributed lookup
tables that can serve as backbones for P2P networks, performing e�cient O(log n) file lookups across
data distributed amongst the nodes in a network. DHTs typically organize their nodes in a structure
that indexes a subset of the other nodes and allows particular pieces of information to be retrieved
without traversing most of the network. DHTs themselves are an active field of research with many
well-known and highly studied systems such as Chord [31], CAN [24], and Pastry [27].

DHTs have also been proposed for use in P2P systems. Some BitTorrent clients possess ‘track-
erless’ operation modes in which a DHT is used in order to allow the network to function without
a tracker [18]. However, the use of DHTs in P2P systems is far from an ideal solution. Chawathe
et al [7] outline several of the problems of using DHTs in a P2P network. One issue is the high
degree of churn in a typical P2P network. Since DHTs are highly structured, there is significant
overhead incurred when nodes are added or removed from the network. In a typically P2P network,
peers are frequently entering and leaving, and this will imposes a significant maintenance burden
if a DHT is in use. Another issue is that while DHTs perform exact match queries very well, they
generally cannot perform keyword searches. Users will often not know the exact file they wish to
locate, so the sacrifice of keyword searches is seriously detrimental to the network. Also note that
in the specific example of BitTorrent, DHTs also do not alleviate the problem of needing to find a
torrent file before joining the network. Finally, [7] argues that since most requests in P2P systems
are for highly replicated files, precise DHT lookups are unnecessary.

An overview of the properties and tradeo↵s of each of these network types is given in Table 2.1.
While there are many specific P2P networks other than the ones listed, we feel that the 5 discussed
above typify the majority of P2P systems in use today.
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•  Keep the hop count small"
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Chord Overview"

•  Provides peer-to-peer hash lookup service (basically 
a distributed index):"
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•  How does Chord locate a node?"
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•  Finger i points to successor of n+2i-1!
•  ith entry in n’s finger table has ID > (n+2i-1) mod 2m"
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Lookups are Faster"
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Lookups are Faster"

24"

•  Three step process:"

•  Initialize all fingers of new node"

•  Update fingers of existing nodes"

•  Transfer keys from successor to new node"

•  Less aggressive mechanism (lazy finger update):"

•  Initialize only the finger to successor node"

•  Periodically verify immediate successor, predecessor"

•  Periodically refresh finger table entries"

Joining the Ring"
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25"

•  Initialize the new node’s (N36) finger table"

•  Locate any node p in the ring"

•  Ask node p to lookup fingers of new node N36"

•  Return results to new node"

N36"

1. Lookup(37,38,40,…,100,164)"
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Joining the Ring - Step 1"

26"

•  Updating fingers of existing nodes"
•  New node calls update function on existing nodes"

•  Existing nodes can recursively update fingers of other nodes"

•  N36 sets successor pointer to be N40"
•  N20 sets successor pointer to be N36"
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Joining the Ring - Step 2"

27"

•  Transfer keys from successor node to new node"

•  Only keys in the range are transferred "

Copy keys 21…36"
from N40 to N36"
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Joining the Ring - Step 3"

•  Note: When a node leaves ring, all keys are copied to successor"

28"

•  Failure of nodes might cause incorrect lookup"
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Lookup(90)"

•  N80 doesn’t know correct successor, so lookup fails"

•  What should we do?"

Handing Failures"

29"

•  Use successor list (in addition to finger table)"

•  Each node knows r immediate successors"

•  After failure, will know first live successor"

•  Correct successors guarantee correct lookups"

•  Guarantee is with some probability"

•  Can choose r to make probability of lookup failure arbitrarily small"

Handing Failures"

30"

•  Quick lookup in large systems"

•  Low variation in lookup costs"

•  Robust despite massive failure"

•  Experiments confirm theoretical results (which is always 
a good thing)"

Evaluation Overview"
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25"

•  Initialize the new node’s (N36) finger table"

•  Locate any node p in the ring"

•  Ask node p to lookup fingers of new node N36"

•  Return results to new node"

N36"

1. Lookup(37,38,40,…,100,164)"

N60"

N40"

N5"

N20"
N99"

N80"

Joining the Ring - Step 1"

26"

•  Updating fingers of existing nodes"
•  New node calls update function on existing nodes"

•  Existing nodes can recursively update fingers of other nodes"

•  N36 sets successor pointer to be N40"
•  N20 sets successor pointer to be N36"

N36"

N60"

N40"

N5"

N20"
N99"

N80"

Joining the Ring - Step 2"

27"

•  Transfer keys from successor node to new node"

•  Only keys in the range are transferred "

Copy keys 21…36"
from N40 to N36"

K30"
K38"
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Joining the Ring - Step 3"

•  Note: When a node leaves ring, all keys are copied to successor"

28"

•  Failure of nodes might cause incorrect lookup"
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Lookup(90)"

•  N80 doesn’t know correct successor, so lookup fails"

•  What should we do?"

Handing Failures"

29"

•  Use successor list (in addition to finger table)"

•  Each node knows r immediate successors"

•  After failure, will know first live successor"

•  Correct successors guarantee correct lookups"

•  Guarantee is with some probability"

•  Can choose r to make probability of lookup failure arbitrarily small"

Handing Failures"

30"

•  Quick lookup in large systems"

•  Low variation in lookup costs"

•  Robust despite massive failure"

•  Experiments confirm theoretical results (which is always 
a good thing)"

Evaluation Overview"
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25"

•  Initialize the new node’s (N36) finger table"

•  Locate any node p in the ring"

•  Ask node p to lookup fingers of new node N36"

•  Return results to new node"

N36"

1. Lookup(37,38,40,…,100,164)"
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Joining the Ring - Step 1"

26"

•  Updating fingers of existing nodes"
•  New node calls update function on existing nodes"

•  Existing nodes can recursively update fingers of other nodes"

•  N36 sets successor pointer to be N40"
•  N20 sets successor pointer to be N36"
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Joining the Ring - Step 2"

27"

•  Transfer keys from successor node to new node"

•  Only keys in the range are transferred "

Copy keys 21…36"
from N40 to N36"

K30"
K38"
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Joining the Ring - Step 3"

•  Note: When a node leaves ring, all keys are copied to successor"

28"

•  Failure of nodes might cause incorrect lookup"
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Lookup(90)"

•  N80 doesn’t know correct successor, so lookup fails"

•  What should we do?"

Handing Failures"

29"

•  Use successor list (in addition to finger table)"

•  Each node knows r immediate successors"

•  After failure, will know first live successor"

•  Correct successors guarantee correct lookups"

•  Guarantee is with some probability"

•  Can choose r to make probability of lookup failure arbitrarily small"

Handing Failures"

30"

•  Quick lookup in large systems"

•  Low variation in lookup costs"

•  Robust despite massive failure"

•  Experiments confirm theoretical results (which is always 
a good thing)"

Evaluation Overview"
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31"

•  Cost is O(log N) as predicted by theory"

•  Constant is 1/2"
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Cost of lookup"

32"

•  Start with 1000 peers"
•  Insert 1000 key/value pairs (and replicate each 5 times)"
•  Stop X% of peers"
•  Perform 1000 lookups"

Robustness"
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Massive failures have little impact!"
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Effectiveness of Load Balancing"
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Distribution of Path Length!
(4096 nodes)"

36"

Discussion"

•  Limitations?  Problems?  Questions?"
•  Locality with respect to the underlying network?"

•  From Mass, first lookup goes to Australia, second to 
Europe, third to Asia"

•  Even O(log n) steps too many for routing in large 
networks?"

•  Single popular key mapping to a single node?"
•  What about search?"
•  How does replication fit into the picture?"
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31"

•  Cost is O(log N) as predicted by theory"

•  Constant is 1/2"
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32"

•  Start with 1000 peers"
•  Insert 1000 key/value pairs (and replicate each 5 times)"
•  Stop X% of peers"
•  Perform 1000 lookups"
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Massive failures have little impact!"
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Distribution of Path Length!
(4096 nodes)"

36"

Discussion"

•  Limitations?  Problems?  Questions?"
•  Locality with respect to the underlying network?"

•  From Mass, first lookup goes to Australia, second to 
Europe, third to Asia"

•  Even O(log n) steps too many for routing in large 
networks?"

•  Single popular key mapping to a single node?"
•  What about search?"
•  How does replication fit into the picture?"


