
Sean Barker

Final Project Info

1

5 

25"

Wide-Area Examples"
•  We don’t have to limit ourselves to just academic clusters…"
•  SETI@home [2002]"

•  Motivation: Most desktop PCs are idle and online most of the time"
•  Harness spare-computing power of end-user computers"
•  Use PC spare cycles to help Search for Extra-Terrestial Intelligence"

•  How it works: Partition streams of data from radio telescope into 107-
second work units of about 350KB"
•  Distributed work to client computers (PCs)"
•  Clients perform work/computation when PC owner is not using PC"
•  Redundancy: Replicate each work unit 3-4 times"

•  Results:"
•  3.91 million personal computers"
•  27.36 teraflops of power ""

26"

P2P Networks"
•  What about non-scientific applications?"
•  The first application that truly demanded globally-scalable 

information storage and retrieval was digital music sharing"
•  Napster [1999]"

•  Napster was the first big P2P network"
•  PCs (peers) running Napster would use Napster server to locate 

desired data, and then peers would exchange data directly"
•  Demonstrated feasibility of building useful large-scale services that 

depend wholly on data and computers owned by ordinary Internet 
users"

•  We’ll come back to Napster and P2P soon…"

27"

Research and Development 
Challenges"

•  Suppose you want to build a new network protocol: TCPv2"
•  One key requirement for any new network protocol is “correct” 

behavior in wide-area"
•  So how do you test it?"

•  Suppose you want to build a new P2P system"
•  You need to show that the system works for Internet users all over 

the world"
•  How do you deploy and test it’s performance?"

•  Grids? SETI@home? "
•  Not well suited for these applications!"

•  Companies like Google have lots of machines at their 
disposal, but unfortunately, we aren’t Google…"

28"

Hypothetical Example Application: 
ByteTorrent"

•  Suppose we build ByteTorrent, a 
new file distribution service"
•  Sender (S) sends file to Receivers (R)"
•  Sender split file into “chunks”"
•  Two phases of execution"

•  Phase 1 – join network"
•  Phase 2 – transfer file"

•  We need a large network of 
distributed machines to evaluate 
performance"
•  Where can we deploy?"

Chunk 2!

R!

S

Chunk 1!

R

File !

29"

PlanetLab"

•  PlanetLab was designed to address this limitation 
(http://www.planet-lab.org)"
•  “…global research network that supports the 

development of new network services. Since the beginning 
of 2003, more than 1,000 researchers at top academic 
institutions and industrial research labs have used 
PlanetLab to develop new technologies for distributed 
storage, network mapping, peer-to-peer systems, 
distributed hash tables, and query processing.”"

30"

PlanetLab"

•  1185 (Linux) machines at 582 sites"
•  5 here at Williams"
•  Large collection of machines spread around the world"

•  It is NOT a supercomputer, internet emulator, 
simulation platform"

•  Opportunity to validate systems in real distributed 
environment"

Sean Barker

Not Recommended

2



Sean Barker

Replication

3

2 

Replication Goals"

•  Replicate network service for:"
•  Better performance"
•  Enhanced availability"

•  Fault tolerance"

•  How could replication lower performance, 
availability, and fault tolerance?"

Replication Challenges"

•  Transparency"
•  Mask from client the fact that there are multiple physical 

copies of a logical service or object"
•  Expanded role of naming in networks/dist systems"

•  Consistency"
•  Data updates must eventually be propagated to multiple 

replicas"

•  Guarantees about latest version of data?"
•  Guarantees about ordering of updates among replicas?"

•  Increased complexity…"

Replication Model"

Replica"Replica"

Service"

Client"

Client"

Replica"

FE"

FE"

How to Handle Updates?"
•  Problem: all updates must be distributed to all 

replicas"
•  Different consistency guarantees for different 

services"
•  Synchronous vs. asynchronous update distribution"
•  Read/write ratio of workload"

•  Three options:"
•  Passive (primary-backup) replication"
•  Active replication"
•  Gossip-based replication"

Replication Alternatives"

•  Primary-backup replication (passive)"
•  All updates go to a single server (master)"
•  Master distributes updates to all other replicas (slaves)"

•  Active replication"
•  Replicas are all “equal”"
•  All updates go to all replicas"

•  Gossip architecture"
•  Updates can go to any replica"
•  Each replica responsible for eventually delivering local 

updates to all other replicas"

Passive Replication"

Slave"Master"

Service"

Client"

Client"

Slave"

FE"

FE"

write"

read"

write"

Each replica must handle "
write load of entire system?!

read"

Sean Barker

Passive Replication

4

2 

Replication Goals"

•  Replicate network service for:"
•  Better performance"
•  Enhanced availability"

•  Fault tolerance"

•  How could replication lower performance, 
availability, and fault tolerance?"

Replication Challenges"

•  Transparency"
•  Mask from client the fact that there are multiple physical 

copies of a logical service or object"
•  Expanded role of naming in networks/dist systems"

•  Consistency"
•  Data updates must eventually be propagated to multiple 

replicas"

•  Guarantees about latest version of data?"
•  Guarantees about ordering of updates among replicas?"

•  Increased complexity…"

Replication Model"

Replica"Replica"

Service"

Client"

Client"

Replica"

FE"

FE"

How to Handle Updates?"
•  Problem: all updates must be distributed to all 

replicas"
•  Different consistency guarantees for different 

services"
•  Synchronous vs. asynchronous update distribution"
•  Read/write ratio of workload"

•  Three options:"
•  Passive (primary-backup) replication"
•  Active replication"
•  Gossip-based replication"

Replication Alternatives"

•  Primary-backup replication (passive)"
•  All updates go to a single server (master)"
•  Master distributes updates to all other replicas (slaves)"

•  Active replication"
•  Replicas are all “equal”"
•  All updates go to all replicas"

•  Gossip architecture"
•  Updates can go to any replica"
•  Each replica responsible for eventually delivering local 

updates to all other replicas"

Passive Replication"

Slave"Master"

Service"

Client"

Client"

Slave"

FE"

FE"

write"

read"

write"

Each replica must handle "
write load of entire system?!

read"



Sean Barker

Active Replication

5

3 

Active Replication"

Replica"

Replica"

Service"

Client"

Client"

Replica"

FE"

FE"

write"

read"

write"

Each replica still must handle "
write load of entire system!!

write"

Gossip Architecture"

Replica"Replica"

Service"

Client"

Client"

Replica"

FE"

FE" read"

write"

Replicas may be temporarily out!
of sync while updates propagate!

Gossip: !
Update Ordering Requirements"

•  Total Order"
•  Bulletin board: all messages assigned globally unique 

message identifier"
•  For messages r1, r2: either r1 appears before r2 at all 

replicas or r1 appears after r2 at all replicas"

•  Causal Order"
•  Bulletin board: message replies appear after original 

posting"
•  For messages r1, r2: r1 appears before r2 if r1 happens 

before r2!
•  Easier to implement than total ordering!

•  Hmm…haven’t we seen this before?"

Review: Happens Before"

•  Captures potential causal ordering (information flow)"
•  ab if a takes place before b in same process"
•  Send(m)recv(m)"
•  Transitivity holds"

p1"

p2"

p3"

a" b"

c" d"

f"e"

physical"
time"

Implementing Total Ordering"

•  Use central sequencer"
•  Send updates to centralized site, assign monotonically 

increasing identifier, distribute to all replicas"
•  Single point of failure at central site, contention"

•  Distributed total ordering"
•  Front end sends update to all replicas"

•  Each replica proposes unique id"
•  Front end picks highest value"

•  Transmits final value back to replicas"

•  3 messages/replica overhead"

Network Partitions"

•  Some failure (either network or host) keeps 
replicas from communicating with one 
another"

•  How to proceed with read/write transactions 
in case where not all replicas can be 
contacted?"

Sean Barker

Gossip Architecture

6

3 

Active Replication"

Replica"

Replica"

Service"

Client"

Client"

Replica"

FE"

FE"

write"

read"

write"

Each replica still must handle "
write load of entire system!!

write"

Gossip Architecture"

Replica"Replica"

Service"

Client"

Client"

Replica"

FE"

FE" read"

write"

Replicas may be temporarily out!
of sync while updates propagate!

Gossip: !
Update Ordering Requirements"

•  Total Order"
•  Bulletin board: all messages assigned globally unique 

message identifier"
•  For messages r1, r2: either r1 appears before r2 at all 

replicas or r1 appears after r2 at all replicas"

•  Causal Order"
•  Bulletin board: message replies appear after original 

posting"
•  For messages r1, r2: r1 appears before r2 if r1 happens 

before r2!
•  Easier to implement than total ordering!

•  Hmm…haven’t we seen this before?"

Review: Happens Before"

•  Captures potential causal ordering (information flow)"
•  ab if a takes place before b in same process"
•  Send(m)recv(m)"
•  Transitivity holds"

p1"

p2"

p3"

a" b"

c" d"

f"e"

physical"
time"

Implementing Total Ordering"

•  Use central sequencer"
•  Send updates to centralized site, assign monotonically 

increasing identifier, distribute to all replicas"
•  Single point of failure at central site, contention"

•  Distributed total ordering"
•  Front end sends update to all replicas"

•  Each replica proposes unique id"
•  Front end picks highest value"

•  Transmits final value back to replicas"

•  3 messages/replica overhead"

Network Partitions"

•  Some failure (either network or host) keeps 
replicas from communicating with one 
another"

•  How to proceed with read/write transactions 
in case where not all replicas can be 
contacted?"



Sean Barker

Fault Tolerance

7

Sean Barker

Redundancy

8


