
Sean Barker

Porcupine

1

Sean Barker

Porcupine Architecture

2

3/11/14

6

31"

Overview: Porcupine"

SMTP
server

POP
server

IMAP
server

Mail map
User

profile

Replication Manager

Membership
 Manager

RPC

Load Balancer

User map

Email
msgs

Internet

LAN

Porcupine
cluster

DNS

Router/
firewall

32"

Receiving Email in Porcupine"

Internet

A B ...

A

1. “send
mail to

bob”

2. Who
manages
bob? ⇒ A

3. “Verify
bob”

5. Pick the best
nodes to store
new msg ⇒ {C,D}

DNS-RR
selection

4. “OK,
bob has
msgs on
C, D, & E

6. “Store
msg”

B

C

Protocol
handling

User
lookup

Load
Balancing

Data store
(replication)

... C

D

7. “Store
msg”

D

33"

Basic Data Structures"

User map

Mail map /
user
profile

Mailbox
storage

bob

B C A C A B A C

bob: {A,C}
ann: {B}

B C A C A B A C

suzy: {A,C} joe: {B}

B C A C A B A C

hash(“bob”) = 2

A B C

Bob’s
MSGs

Suzy’s
MSGs

Bob’s
MSGs

Joe’s
MSGs

Ann’s
MSGs

Suzy’s
MSGs

0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6

34"

Porcupine Performance"

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine

sendmail+popd

68m/day

25m/day

POP performance, no email replication

Sean Barker

Porcupine Data Structures

3

3/11/14

6

31"

Overview: Porcupine"

SMTP
server

POP
server

IMAP
server

Mail map
User

profile

Replication Manager

Membership
 Manager

RPC

Load Balancer

User map

Email
msgs

Internet

LAN

Porcupine
cluster

DNS

Router/
firewall

32"

Receiving Email in Porcupine"

Internet

A B ...

A

1. “send
mail to

bob”

2. Who
manages
bob? ⇒ A

3. “Verify
bob”

5. Pick the best
nodes to store
new msg ⇒ {C,D}

DNS-RR
selection

4. “OK,
bob has
msgs on
C, D, & E

6. “Store
msg”

B

C

Protocol
handling

User
lookup

Load
Balancing

Data store
(replication)

... C

D

7. “Store
msg”

D

33"

Basic Data Structures"

User map

Mail map /
user
profile

Mailbox
storage

bob

B C A C A B A C

bob: {A,C}
ann: {B}

B C A C A B A C

suzy: {A,C} joe: {B}

B C A C A B A C

hash(“bob”) = 2

A B C

Bob’s
MSGs

Suzy’s
MSGs

Bob’s
MSGs

Joe’s
MSGs

Ann’s
MSGs

Suzy’s
MSGs

0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6

34"

Porcupine Performance"

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine

sendmail+popd

68m/day

25m/day

POP performance, no email replication

Sean Barker

Sending Mail in Porcupine

4

3/11/14

6

31"

Overview: Porcupine"

SMTP
server

POP
server

IMAP
server

Mail map
User

profile

Replication Manager

Membership
 Manager

RPC

Load Balancer

User map

Email
msgs

Internet

LAN

Porcupine
cluster

DNS

Router/
firewall

32"

Receiving Email in Porcupine"

Internet

A B ...

A

1. “send
mail to

bob”

2. Who
manages
bob? ⇒ A

3. “Verify
bob”

5. Pick the best
nodes to store
new msg ⇒ {C,D}

DNS-RR
selection

4. “OK,
bob has
msgs on
C, D, & E

6. “Store
msg”

B

C

Protocol
handling

User
lookup

Load
Balancing

Data store
(replication)

... C

D

7. “Store
msg”

D

33"

Basic Data Structures"

User map

Mail map /
user
profile

Mailbox
storage

bob

B C A C A B A C

bob: {A,C}
ann: {B}

B C A C A B A C

suzy: {A,C} joe: {B}

B C A C A B A C

hash(“bob”) = 2

A B C

Bob’s
MSGs

Suzy’s
MSGs

Bob’s
MSGs

Joe’s
MSGs

Ann’s
MSGs

Suzy’s
MSGs

0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6

34"

Porcupine Performance"

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine

sendmail+popd

68m/day

25m/day

POP performance, no email replication

Sean Barker

Porcupine Performance

5

3/11/14

6

31"

Overview: Porcupine"

SMTP
server

POP
server

IMAP
server

Mail map
User

profile

Replication Manager

Membership
 Manager

RPC

Load Balancer

User map

Email
msgs

Internet

LAN

Porcupine
cluster

DNS

Router/
firewall

32"

Receiving Email in Porcupine"

Internet

A B ...

A

1. “send
mail to

bob”

2. Who
manages
bob? ⇒ A

3. “Verify
bob”

5. Pick the best
nodes to store
new msg ⇒ {C,D}

DNS-RR
selection

4. “OK,
bob has
msgs on
C, D, & E

6. “Store
msg”

B

C

Protocol
handling

User
lookup

Load
Balancing

Data store
(replication)

... C

D

7. “Store
msg”

D

33"

Basic Data Structures"

User map

Mail map /
user
profile

Mailbox
storage

bob

B C A C A B A C

bob: {A,C}
ann: {B}

B C A C A B A C

suzy: {A,C} joe: {B}

B C A C A B A C

hash(“bob”) = 2

A B C

Bob’s
MSGs

Suzy’s
MSGs

Bob’s
MSGs

Joe’s
MSGs

Ann’s
MSGs

Suzy’s
MSGs

0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6

34"

Porcupine Performance"

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine

sendmail+popd

68m/day

25m/day

POP performance, no email replication

Sean Barker

Centralized Mutual Exclusion

6

3/20/14

5

25"

Central Server Approach"
•  All processes contact central server to obtain

permission to enter CS"
•  Pros: Simple to implement"
•  Cons: Can be slow (time to transmit release and

grant messages); central server is bottleneck"
Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

26"

Ring-Based Approach"
•  Arrange processes in logical ring"
•  Each process has communication channel to the next process "

•  Pass “token” around ring; token grants access to CS"
•  Pros: Simple, no central bottleneck"

•  Cons: Potentially large delay; wastes bandwidth"

p
n

p
2

p
3

p
4

Token

p
1

27"

Multicast & Logical Clocks"
•  Ricart and Agrawala developed approach based on multicast and

Lamport clocks"
•  Multicast request for access to other processes; wait for reply"
•  Logical timestamps make sure happened-before requirement is met"
•  Pros: Short delay (compared to ring)"
•  Cons: Consumes lots of bandwidth"

p"
3"

34"

Reply"

34"

41"

41"

34"

p"
1"

p"
2"

Reply"

41

Reply"

28"

Maekawa’s Voting Algorithm"

•  Not necessary for all processes to grant access, only
need subset of all processes"
•  Each process maintains a “voting set”"
•  All voting sets are the same size"

•  Make sure subsets used by any two processes overlap"
•  For all voting sets, Vi ∩ Vj ≠ ∅"

•  Pros: Requires less bandwidth than previous approach"
•  Cons: Can cause deadlock! How? "

29"

Deadlock Example"
•  Seven processes, seven voting sets"

•  From V0={0,1,2}, 0,2 send ack to 0, but 1 sends ack to 1;"

•  From V1={1,3,5}, 1,3 send ack to 1, but 5 sends ack to 2;"

•  Prom V2={2,4,5}, 4,5 send ack to 2, but 2 sends ack to 0; "

Now, 0 waits for 1, 1 waits for 2, and 2 waits for 0. "
So deadlock is possible!"
"
(To correct this, requests are accepted in happened-before order.)"

V0 = {0, 1, 2}

V1 = {1, 3, 5}

V2 = {2, 4, 5}

V3 = {0, 3, 4}

V4 = {1, 4, 6}

V5 = {0, 5, 6}

V6 = {2, 3, 6}

30"

Questions"

•  What about fault tolerance?"

•  What happens when messages are lost?"
•  What happens when a process crashes?"

Sean Barker

Token Ring Approach

7

3/20/14

5

25"

Central Server Approach"
•  All processes contact central server to obtain

permission to enter CS"
•  Pros: Simple to implement"
•  Cons: Can be slow (time to transmit release and

grant messages); central server is bottleneck"
Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

26"

Ring-Based Approach"
•  Arrange processes in logical ring"
•  Each process has communication channel to the next process "

•  Pass “token” around ring; token grants access to CS"
•  Pros: Simple, no central bottleneck"

•  Cons: Potentially large delay; wastes bandwidth"

p
n

p
2

p
3

p
4

Token

p
1

27"

Multicast & Logical Clocks"
•  Ricart and Agrawala developed approach based on multicast and

Lamport clocks"
•  Multicast request for access to other processes; wait for reply"
•  Logical timestamps make sure happened-before requirement is met"
•  Pros: Short delay (compared to ring)"
•  Cons: Consumes lots of bandwidth"

p"
3"

34"

Reply"

34"

41"

41"

34"

p"
1"

p"
2"

Reply"

41

Reply"

28"

Maekawa’s Voting Algorithm"

•  Not necessary for all processes to grant access, only
need subset of all processes"
•  Each process maintains a “voting set”"
•  All voting sets are the same size"

•  Make sure subsets used by any two processes overlap"
•  For all voting sets, Vi ∩ Vj ≠ ∅"

•  Pros: Requires less bandwidth than previous approach"
•  Cons: Can cause deadlock! How? "

29"

Deadlock Example"
•  Seven processes, seven voting sets"

•  From V0={0,1,2}, 0,2 send ack to 0, but 1 sends ack to 1;"

•  From V1={1,3,5}, 1,3 send ack to 1, but 5 sends ack to 2;"

•  Prom V2={2,4,5}, 4,5 send ack to 2, but 2 sends ack to 0; "

Now, 0 waits for 1, 1 waits for 2, and 2 waits for 0. "
So deadlock is possible!"
"
(To correct this, requests are accepted in happened-before order.)"

V0 = {0, 1, 2}

V1 = {1, 3, 5}

V2 = {2, 4, 5}

V3 = {0, 3, 4}

V4 = {1, 4, 6}

V5 = {0, 5, 6}

V6 = {2, 3, 6}

30"

Questions"

•  What about fault tolerance?"

•  What happens when messages are lost?"
•  What happens when a process crashes?"

Sean Barker

Multicast Approach

8

3/20/14

5

25"

Central Server Approach"
•  All processes contact central server to obtain

permission to enter CS"
•  Pros: Simple to implement"
•  Cons: Can be slow (time to transmit release and

grant messages); central server is bottleneck"
Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

26"

Ring-Based Approach"
•  Arrange processes in logical ring"
•  Each process has communication channel to the next process "

•  Pass “token” around ring; token grants access to CS"
•  Pros: Simple, no central bottleneck"

•  Cons: Potentially large delay; wastes bandwidth"

p
n

p
2

p
3

p
4

Token

p
1

27"

Multicast & Logical Clocks"
•  Ricart and Agrawala developed approach based on multicast and

Lamport clocks"
•  Multicast request for access to other processes; wait for reply"
•  Logical timestamps make sure happened-before requirement is met"
•  Pros: Short delay (compared to ring)"
•  Cons: Consumes lots of bandwidth"

p"
3"

34"

Reply"

34"

41"

41"

34"

p"
1"

p"
2"

Reply"

41

Reply"

28"

Maekawa’s Voting Algorithm"

•  Not necessary for all processes to grant access, only
need subset of all processes"
•  Each process maintains a “voting set”"
•  All voting sets are the same size"

•  Make sure subsets used by any two processes overlap"
•  For all voting sets, Vi ∩ Vj ≠ ∅"

•  Pros: Requires less bandwidth than previous approach"
•  Cons: Can cause deadlock! How? "

29"

Deadlock Example"
•  Seven processes, seven voting sets"

•  From V0={0,1,2}, 0,2 send ack to 0, but 1 sends ack to 1;"

•  From V1={1,3,5}, 1,3 send ack to 1, but 5 sends ack to 2;"

•  Prom V2={2,4,5}, 4,5 send ack to 2, but 2 sends ack to 0; "

Now, 0 waits for 1, 1 waits for 2, and 2 waits for 0. "
So deadlock is possible!"
"
(To correct this, requests are accepted in happened-before order.)"

V0 = {0, 1, 2}

V1 = {1, 3, 5}

V2 = {2, 4, 5}

V3 = {0, 3, 4}

V4 = {1, 4, 6}

V5 = {0, 5, 6}

V6 = {2, 3, 6}

30"

Questions"

•  What about fault tolerance?"

•  What happens when messages are lost?"
•  What happens when a process crashes?"

Sean Barker

Voting Approach

9

P0

P1 P2

V0

V1

V2

Sean Barker

Voting Example

10

3/20/14

5

25"

Central Server Approach"
•  All processes contact central server to obtain

permission to enter CS"
•  Pros: Simple to implement"
•  Cons: Can be slow (time to transmit release and

grant messages); central server is bottleneck"
Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

26"

Ring-Based Approach"
•  Arrange processes in logical ring"
•  Each process has communication channel to the next process "

•  Pass “token” around ring; token grants access to CS"
•  Pros: Simple, no central bottleneck"

•  Cons: Potentially large delay; wastes bandwidth"

p
n

p
2

p
3

p
4

Token

p
1

27"

Multicast & Logical Clocks"
•  Ricart and Agrawala developed approach based on multicast and

Lamport clocks"
•  Multicast request for access to other processes; wait for reply"
•  Logical timestamps make sure happened-before requirement is met"
•  Pros: Short delay (compared to ring)"
•  Cons: Consumes lots of bandwidth"

p"
3"

34"

Reply"

34"

41"

41"

34"

p"
1"

p"
2"

Reply"

41

Reply"

28"

Maekawa’s Voting Algorithm"

•  Not necessary for all processes to grant access, only
need subset of all processes"
•  Each process maintains a “voting set”"
•  All voting sets are the same size"

•  Make sure subsets used by any two processes overlap"
•  For all voting sets, Vi ∩ Vj ≠ ∅"

•  Pros: Requires less bandwidth than previous approach"
•  Cons: Can cause deadlock! How? "

29"

Deadlock Example"
•  Seven processes, seven voting sets"

•  From V0={0,1,2}, 0,2 send ack to 0, but 1 sends ack to 1;"

•  From V1={1,3,5}, 1,3 send ack to 1, but 5 sends ack to 2;"

•  Prom V2={2,4,5}, 4,5 send ack to 2, but 2 sends ack to 0; "

Now, 0 waits for 1, 1 waits for 2, and 2 waits for 0. "
So deadlock is possible!"
"
(To correct this, requests are accepted in happened-before order.)"

V0 = {0, 1, 2}

V1 = {1, 3, 5}

V2 = {2, 4, 5}

V3 = {0, 3, 4}

V4 = {1, 4, 6}

V5 = {0, 5, 6}

V6 = {2, 3, 6}

30"

Questions"

•  What about fault tolerance?"

•  What happens when messages are lost?"
•  What happens when a process crashes?"

Sean Barker

Consensus

11

3/20/14

6

31"

Agreement"

•  The goal is to get processes to agree on some
value after one or more processes propose
that value"

•  …even in the presence of faults!"

•  This is often referred to as the consensus
problem!
"

32"

Consensus"

•  To reach consensus, every process begins in an
undecided state and proposes a single value"

•  Processes communicate, deciding which value to
accept (one option: majority rules)"

•  Requirements:"
•  Termination - Eventually each process sets its decision

variable"
•  Agreement - The decision value of each process is the

same"
•  Integrity - If the correct processes all proposed the same

value, then any correct process in decided state has
chosen that value"

33"

Consensus"

1

P2

P3 (crashes)

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

d1:=proceed d2:=proceed

34"

Byzantine Generals!
Lamport et al., 1982"

•  Three or more generals agree to attack or retreat"
•  One general (the commander) issues the order, the

others must decide to attack or retreat "
•  Slightly different than normal consensus since there is a

“distinguished process” deciding initial value"

•  One or more general may be “treacherous” or faulty"
•  He lies! He says “attack” to one general and “retreat” to

another"

•  How does each general decide what to do?"
•  Assume this is a synchronous system"

35"

Three Byzantine Generals"
p"1 "(Commander)"

p"2" p"3"

1:v"1:v"
2:1:v"

3:1:u"

p"1 "(Commander)"

p"2" p"3"

1:x"1:w"
2:1:w"

3:1:x"

“3 says 1 says u”"

Faulty general. What should
p2 decide?"

The goal is for p2 to determine
that p1 says v. But p2 doesn’t

have enough info!"

36"

Three Byzantine Generals"
p"1 "(Commander)"

p"2" p"3"

1:v"1:v"
2:1:v"

3:1:u"

p"1 "(Commander)"

p"2" p"3"

1:x"1:w"
2:1:w"

3:1:x"

“3 says 1 says x”"

Faulty commander. What
should p2 decide?"

p2 once again has conflicting
info. Can’t distinguish between
faulty p3 and faulty commander!"

