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Receiving Email in Porcupine"
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Central Server Approach"
•  All processes contact central server to obtain 

permission to enter CS"
•  Pros: Simple to implement"
•  Cons: Can be slow (time to transmit release and 

grant messages); central server is bottleneck"
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Ring-Based Approach"
•  Arrange processes in logical ring"
•  Each process has communication channel to the next process "

•  Pass “token” around ring; token grants access to CS"
•  Pros: Simple, no central bottleneck"

•  Cons: Potentially large delay; wastes bandwidth"
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Multicast & Logical Clocks"
•  Ricart and Agrawala developed approach based on multicast and 

Lamport clocks"
•  Multicast request for access to other processes; wait for reply"
•  Logical timestamps make sure happened-before requirement is met"
•  Pros: Short delay (compared to ring)"
•  Cons: Consumes lots of bandwidth"

p"
3"

34"

Reply"

34"

41"

41"

34"

p"
1"

p"
2"

Reply"

41 

Reply"

28"

Maekawa’s Voting Algorithm"

•  Not necessary for all processes to grant access, only 
need subset of all processes"
•  Each process maintains a “voting set”"
•  All voting sets are the same size"

•  Make sure subsets used by any two processes overlap"
•  For all voting sets, Vi ∩ Vj ≠ ∅"

•  Pros: Requires less bandwidth than previous approach"
•  Cons: Can cause deadlock! How? "

29"

Deadlock Example"
•  Seven processes, seven voting sets"

•  From V0={0,1,2}, 0,2 send ack to 0, but 1 sends ack to 1;"

•  From V1={1,3,5}, 1,3 send ack to 1, but 5 sends ack to 2;"

•  Prom V2={2,4,5}, 4,5 send ack to 2, but 2 sends ack to 0; "

Now, 0 waits for 1, 1 waits for 2, and 2 waits for 0. "
So deadlock is possible!"
"
(To correct this, requests are accepted in happened-before order.)"

V0 =  {0, 1, 2} 

V1  =  {1, 3, 5} 

V2  =  {2, 4, 5} 

V3  =  {0, 3, 4} 

V4  =  {1, 4, 6} 

V5  =  {0, 5, 6} 

V6  =  {2, 3, 6} 

30"

Questions"

•  What about fault tolerance?"

•  What happens when messages are lost?"
•  What happens when a process crashes?"
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Agreement"

•  The goal is to get processes to agree on some 
value after one or more processes propose 
that value"

•  …even in the presence of faults!"

•  This is often referred to as the consensus 
problem!
"

32"

Consensus"

•  To reach consensus, every process begins in an 
undecided state and proposes a single value"

•  Processes communicate, deciding which value to 
accept (one option: majority rules)"

•  Requirements:"
•  Termination - Eventually each process sets its decision 

variable"
•  Agreement - The decision value of each process is the 

same"
•  Integrity - If the correct processes all proposed the same 

value, then any correct process in decided state has 
chosen that value"

33"

Consensus"

1

P2

P3 (crashes)

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

d1:=proceed d2:=proceed

34"

Byzantine Generals!
Lamport et al., 1982"

•  Three or more generals agree to attack or retreat"
•  One general (the commander) issues the order, the 

others must decide to attack or retreat "
•  Slightly different than normal consensus since there is a 

“distinguished process” deciding initial value"

•  One or more general may be “treacherous” or faulty"
•  He lies!  He says “attack” to one general and “retreat” to 

another"

•  How does each general decide what to do?"
•  Assume this is a synchronous system"

35"

Three Byzantine Generals"
p"1 "(Commander)"

p"2" p"3"

1:v"1:v"
2:1:v"

3:1:u"

p"1 "(Commander)"

p"2" p"3"

1:x"1:w"
2:1:w"

3:1:x"

“3 says 1 says u”"

Faulty general.  What should 
p2 decide?"

The goal is for p2 to determine 
that p1 says v.  But p2 doesn’t 

have enough info!"
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Three Byzantine Generals"
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p"1 "(Commander)"

p"2" p"3"
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Faulty commander.  What 
should p2 decide?"

p2 once again has conflicting 
info.  Can’t distinguish between 
faulty p3 and faulty commander!"


