
Sean Barker

Lamport Clocks

1

3/14/14

7

37"

NTP Statistics"

•  In 1999 there were 175,000 hosts running NTP in
the Internet"

•  Among these there were:"
•  Over 300 valid Stratum 1 servers (they are never

contacted directly, unless you are a Stratum 2 server)"
•  Over 20,000 servers at Stratum 2"

•  Over 80,000 servers at Stratum 3"

•  Accuracy of 10s of milliseconds over Internet paths
(even more accurate on LANs)"

38"

Logical Clocks"

39"

Logical Time and Logical Clocks"
•  Instead of synchronizing clocks, event ordering can be used"
•  Rules:"

1. If two events occurred at the same process pi (i = 1, 2, … N) then they
occurred in the order observed by pi, that is → "

2. When a message m is sent between two processes, send(m) happened
before receive(m)"

3. The happened before relation is transitive"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

40"

Happened Before Relation"
•  What do we know about events a, b, c, d, e?"

•  Rule 1: a → b (at p1), c → d (at p2)"
•  Rule 2: b → c (by m1), d → f (by of m2)"
•  Rule 3: a → b → c → d → f = a → f "

•  What do we know about a and e?"
•  No relation - they are concurrent: a || e"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

41"

Lamport’s Logical Clocks"
•  A logical clock is a monotonically increasing software counter. It need not

relate to a physical clock."
•  Each process pi has a logical clock, Li which can be used to apply logical

timestamps to events using the following rules:"
•  LC1: Li is incremented by 1 before each event at process pi, Li = Li + 1"
•  LC2: "
•  (a) when process pi sends message m, it piggybacks on m the value t = Li "

•  (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before
timestamping the event receive (m)"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

42"

Lamport’s Logical Clocks"
•  Each of p1, p2, p3 has its logical clock initialized to zero "
•  The clock values on events are those immediately after the event"

•  e.g. 1 for a, 2 for b. "
•  For m1, t = 2 is piggybacked and c gets L2 = max(0,2)+1 = 3 "
•  Note that e → e’ implies L(e) < L(e’)"
•  Does L(e) < L(e') imply e → e’ ?"

•  No! The converse is not true: L(e) < L(e') does not imply e → e’"

•  Example: L(e) < L(b) but b || e"

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Sean Barker

Vector Clocks

2

3/14/14

7

37"

NTP Statistics"

•  In 1999 there were 175,000 hosts running NTP in
the Internet"

•  Among these there were:"
•  Over 300 valid Stratum 1 servers (they are never

contacted directly, unless you are a Stratum 2 server)"
•  Over 20,000 servers at Stratum 2"

•  Over 80,000 servers at Stratum 3"

•  Accuracy of 10s of milliseconds over Internet paths
(even more accurate on LANs)"

38"

Logical Clocks"

39"

Logical Time and Logical Clocks"
•  Instead of synchronizing clocks, event ordering can be used"
•  Rules:"

1. If two events occurred at the same process pi (i = 1, 2, … N) then they
occurred in the order observed by pi, that is → "

2. When a message m is sent between two processes, send(m) happened
before receive(m)"

3. The happened before relation is transitive"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

40"

Happened Before Relation"
•  What do we know about events a, b, c, d, e?"

•  Rule 1: a → b (at p1), c → d (at p2)"
•  Rule 2: b → c (by m1), d → f (by of m2)"
•  Rule 3: a → b → c → d → f = a → f "

•  What do we know about a and e?"
•  No relation - they are concurrent: a || e"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

41"

Lamport’s Logical Clocks"
•  A logical clock is a monotonically increasing software counter. It need not

relate to a physical clock."
•  Each process pi has a logical clock, Li which can be used to apply logical

timestamps to events using the following rules:"
•  LC1: Li is incremented by 1 before each event at process pi, Li = Li + 1"
•  LC2: "
•  (a) when process pi sends message m, it piggybacks on m the value t = Li "

•  (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before
timestamping the event receive (m)"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

42"

Lamport’s Logical Clocks"
•  Each of p1, p2, p3 has its logical clock initialized to zero "
•  The clock values on events are those immediately after the event"

•  e.g. 1 for a, 2 for b. "
•  For m1, t = 2 is piggybacked and c gets L2 = max(0,2)+1 = 3 "
•  Note that e → e’ implies L(e) < L(e’)"
•  Does L(e) < L(e') imply e → e’ ?"

•  No! The converse is not true: L(e) < L(e') does not imply e → e’"

•  Example: L(e) < L(b) but b || e"

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Sean Barker

Simple Mail Transfer Protocol (SMTP)

3

3/7/14

6

31"

Java RMI vs. XML-RPC"

•  Java RMI is arguably simpler "
•  Programs look a bit more “normal”"
•  Can serialize (by implementing Serializable) and

return different objects "
•  (See example)"

•  XML-RPC is more flexible"
•  Can interact (easily) with other XML-RPC clients

written in different languages"
•  But procedure calls are somewhat limiting"
•  Difficult to send non-standard objects"

32"

Take-Away Message"

•  RPCs handle the marshaling and unmarshaling
of data automatically"

•  Also handle threading, message formatting,
socket creation, etc."

•  Designed to simplify network programming
through familiar programmatic abstractions"

•  You should appreciate all of this after building
your web servers!"

33"

BREAK"

34"

Intro to Email: !
Terminology"

•  Mail User Agent: end-user email program"
•  Mail Transfer Agent: program responsible for

communicating with remote hosts and
transmitting/receiving email"
•  Think of this as the mail server software"

•  Mail Exchanger: host with specific IP address
(registered with DNS) that takes care of email
for a domain"

35"

SMTP"

•  Used to exchange mail messages between mail
servers (Message Transfer Agents)"

MTA" MTA"

MUA"

SMTP"

File"
System"

MTA"
SMTP"

MUA"

36"

SMTP Protocol"

•  SMTP sender is the client"
•  SMTP receiver is the server"
•  Alternating dialogue:"
•  Client sends command and server responds with

command status message"
•  Order of the commands is important"
•  Status messages include ASCII encoded numeric status

code (like HTTP) and text string"

Sean Barker

POP: Post Office Protocol

4

3/11/14

3

13"

POP – Post Office Protocol"

•  Used to transfer mail from a mail server to a
MUA"

Mail"
Server" MUA"

File"
System"

POP"

14"

POP (version 3)"

•  Similar to SMTP command/reply lockstep
protocol"

•  Used to retrieve mail for a single user"
•  Requires authentication"

•  Commands and replies are ASCII lines"
•  Replies start with “+OK” or “-ERR”.
•  Replies may contain multiple lines"

15"

POP-3 Commands"
•  USER - specify username"
•  PASS - specify password "
•  STAT - get mailbox status"

•  Return number of messages in the mailbox"

•  LIST - get a list of messages and sizes"
•  One per line, termination line contains ‘.’ only"

•  RETR - retrieve a message"
•  DELE - mark a message for deletion from the mailbox"
•  NOOP - send back positive reply"
•  RSET - reset; all deletion marks are unmarked"
•  QUIT - remove marked messages and close the (TCP)

connection"

16"

A POP3 Exchange"
albrecht:~ telnet fuji.cs.williams.edu 110 !
Trying 137.165.8.2... !
Connected to fuji.cs.williams.edu. !
Escape character is '^]'. !
+OK POP3 at fuji.cs.williams.edu server ready "
USER jcool !
+OK Name is a valid mailbox!
PASS nomoresnow !
+OK jeannie has 1 visible message in 1761 octets. !
STAT !
+OK 1 1761!
LIST !
+OK 1 visible messages (1761 octets) !
1 1761!
."

17"

POP3 Example Continued"

•  RETR 1!
+OK 1761 octets!
Received: from fuji.cs.williams.edu"
"From: “Jeannie Albrecht” <jeannie@cs.williams.edu>"
"To: <jeannie@cs.williams.edu>"
"Subject: test"
"Date: Tue, 11 Mar 2014 10:31:21 -0400"

 Content-Type: text/plain;charset=“US-ASCII”"
"
"test"
"."
"

18"

IMAP"

•  IMAP stands for Internet message access
protocol!

•  Very widely used today"
•  Used to transfer messages from server to

client"

Sean Barker

IMAP vs POP

5

3/11/14

4

19"

IMAP vs. POP"

http://wiki.bath.ac.uk/display/bucstech/Imap+overview" 20"

IMAP Advantages Over POP"

•  POP clients connect, download, and disconnect.
IMAP clients often stay connected and download
on demand"

•  POP only allows one connected client at a time;
Simultaneous access by multiple IMAP clients is
allowed"

•  POP does not allow message state (i.e., read/
unread) to be stored on server; IMAP does"

•  POP does not allow for server-side searchers,
IMAP does"

21"

IMAP Disadvantages"

•  More complex protocol"
•  Clients need to maintain TCP/IP connection

to server (this is a big deal!)"
•  If server goes down, user cannot access (even

previously read) messages"
•  Flaky network connections render clients

unusable"

22"

Moving on…"

Yasushi Saito
1999

Functionally Homogeneous Clustering: "
A New Architecture for Scalable "
Data-intensive Internet Services!

24"

Goals"

•  Use cheap, unreliable hardware components to build
scalable data-intensive Internet services."
•  Specifically focus on services where data is written

frequently and high performance is required"

•  Three facets of scalability "
•  Performance: "linear increase with system size"
•  Manageability: "react to changes automatically"
•  Availability: "survive failures gracefully"

" " " ""

Sean Barker

Porcupine

6

Sean Barker

Porcupine Architecture

7

3/11/14

6

31"

Overview: Porcupine"

SMTP
server

POP
server

IMAP
server

Mail map
User

profile

Replication Manager

Membership
 Manager

RPC

Load Balancer

User map

Email
msgs

Internet

LAN

Porcupine
cluster

DNS

Router/
firewall

32"

Receiving Email in Porcupine"

Internet

A B ...

A

1. “send
mail to

bob”

2. Who
manages
bob? ⇒ A

3. “Verify
bob”

5. Pick the best
nodes to store
new msg ⇒ {C,D}

DNS-RR
selection

4. “OK,
bob has
msgs on
C, D, & E

6. “Store
msg”

B

C

Protocol
handling

User
lookup

Load
Balancing

Data store
(replication)

... C

D

7. “Store
msg”

D

33"

Basic Data Structures"

User map

Mail map /
user
profile

Mailbox
storage

bob

B C A C A B A C

bob: {A,C}
ann: {B}

B C A C A B A C

suzy: {A,C} joe: {B}

B C A C A B A C

hash(“bob”) = 2

A B C

Bob’s
MSGs

Suzy’s
MSGs

Bob’s
MSGs

Joe’s
MSGs

Ann’s
MSGs

Suzy’s
MSGs

0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6

34"

Porcupine Performance"

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine

sendmail+popd

68m/day

25m/day

POP performance, no email replication

Sean Barker

Sending Mail in Porcupine

8

3/11/14

6

31"

Overview: Porcupine"

SMTP
server

POP
server

IMAP
server

Mail map
User

profile

Replication Manager

Membership
 Manager

RPC

Load Balancer

User map

Email
msgs

Internet

LAN

Porcupine
cluster

DNS

Router/
firewall

32"

Receiving Email in Porcupine"

Internet

A B ...

A

1. “send
mail to

bob”

2. Who
manages
bob? ⇒ A

3. “Verify
bob”

5. Pick the best
nodes to store
new msg ⇒ {C,D}

DNS-RR
selection

4. “OK,
bob has
msgs on
C, D, & E

6. “Store
msg”

B

C

Protocol
handling

User
lookup

Load
Balancing

Data store
(replication)

... C

D

7. “Store
msg”

D

33"

Basic Data Structures"

User map

Mail map /
user
profile

Mailbox
storage

bob

B C A C A B A C

bob: {A,C}
ann: {B}

B C A C A B A C

suzy: {A,C} joe: {B}

B C A C A B A C

hash(“bob”) = 2

A B C

Bob’s
MSGs

Suzy’s
MSGs

Bob’s
MSGs

Joe’s
MSGs

Ann’s
MSGs

Suzy’s
MSGs

0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6 0 1 2 3 5 4 7 6

34"

Porcupine Performance"

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30
Cluster size

Messages
/second

Porcupine

sendmail+popd

68m/day

25m/day

POP performance, no email replication

