Range searching with Range Trees

Given a set of points, preprocess them into a data structure to support fast range queries.

1D
- **BST**
 - Build: $O(n \log n)$
 - Space: $O(n)$
 - Range queries: $O(p n + k)$

2D
- **2D Range Queries**
 - Denote query $[x_1, x_2] \times [y_1, y_2]$
 - Idea:
 - Find all points with x-coordinates in $[x_1, x_2]$
 - Of all these points, find all points with y-coordinate in $[y_1, y_2]$

Towards 2D Range Trees
- Store points in a BST by x-coordinate
- Use BST to find all points with the x-coordinates in $[x_1, x_2]$
- Of all these points, find all points with y-coordinate in $[y_1, y_2]$

Example Diagrams
- 2D Range Queries
- Towards 2D Range Trees
Towards 2D Range Trees

- Store points in a BBST by x-coordinate
- Use BBST to find all points with the x-coordinates in \([x_1, x_2]\)
- Of all these points, find all points with y-coordinates in \([y_1, y_2]\)

They are sitting in \(O(lg n)\) subtrees

The \(k\) points in the range are in \(O(lg n)\) subtrees

For each subtree we need all points in \([y_1, y_2]\).

A 1-dimensional range query with \([25, 90]\)

General 1D range query
Towards 2D Range Trees

• Store points in a BBST by x-coordinate
• Use BBST to find all points with the x-coordinates in \([x_1, x_2]\)
• Of all these points, find all points with y-coordinates \([y_1, y_2]\)

They are sitting in \(O(\log n)\) subtrees

For each subtree we need all points in \([y_1, y_2]\)

What is a good data structure for range search on y?

The 2D Range Tree

\(P\) is a set of points
\(\text{RangeTree}(P)\) is
• A BBST \(T\) of \(P\) on x-coordinates
• Any node \(v\) in \(T\) stores a BBST \(T_{\text{assoc}}(v)\) of \(P(v)\), by y-coordinates

\(P(v)\): all points in subtree rooted at \(v\)

Class work
• Show the BBST with all data in leaves for \(P = \{1,2,3,4,5,6,7,8,9,10\}\)
• Write pseudocode for the algorithm to build BBST(P)

BuildBBST(P)
The 2D Range Tree

P = set of points
RangeTree(P) is
• A BBST T of P on x-coord
• Any node v in T stores a BBST T_{assoc} of P(v), by y-coord

Class work
• Let P = [(1,4), (5,8), (4,1), (7,3), (3,2), (2,6), (8,7)].
 Show the range tree of P.

Questions
• How do you build it and how fast?
• How much space does it take?
• How do you answer range queries and how fast?
Let \(P = \{p_1, p_2, \ldots, p_n\} \). Assume \(P \) sorted by x-coord.

Algorithm \text{Build2DRT}(P):

1. Construct the associated structure: build a BBST \(T_{assoc} \) on the set of y-coordinates of \(P \).
2. If \(P \) contains only one point:
 - create a leaf \(v \) storing this point, create its \(T_{assoc} \) and return \(v \).
3. Else:
 1. Partition \(P \) into 2 sets w.r.t. the median coordinate \(x_{middle} \):
 \[P_{left} = \{p \in P. p_x \leq x_{middle}\}, \quad P_{right}\ldots \]
 2. \(v_{left} = \text{Build2DRT}(P_{left}) \)
 3. \(v_{right} = \text{Build2DRT}(P_{right}) \)
 4. Create a node \(v \) storing \(x_{middle} \), make \(v_{left} \) its left child, make \(v_{right} \) its right child, make \(T_{assoc} \) its associate structure.
 5. return \(v \).

Building a 2D Range Tree

How fast?

- Let \(T(n) \) be the time of \(\text{Build2DRT}(P) \) of \(n \) points.
- Constructing a BBST on an unsorted set of keys takes \(O(n \lg n) \).
- Then,
 \[T(n) = 2T(n/2) + O(n \lg n) \]
- This solves to \(O(n \lg^2 n) \).

Building a 2D Range Tree

- Common trick: pre-sort \(P \) on y-coord and pass it along as argument

\[(P_x, P_y) \text{ is set of points sorted by x-coord, } P \text{ is set of points sorted by y-coord} \]

\[\text{Build2DRT}(P_x, P_y) \]

- Maintain the sorted sets through recursion

\(P_1 \text{ sorted by x, } P \text{ sorted by y} \)

\(P_2 \text{ sorted by x, } P_2 \text{ sorted by y} \)

- If keys are in order, a BBST can be built in \(O(n) \).
- We have
 \[T(n) = 2T(n/2) + O(n) \text{ which solves to } O(n \lg n) \]

The 2D Range Tree

- How much space does a range tree use?

Two arguments can be made:

- At each level in the tree, each point is stored exactly once (in the associated structure of precisely one node). So every level stores all points and uses \(O(n) \) space: \(\implies O(n \lg n) \) space.
- Each point \(p \) is stored in the associated structures of all nodes on the path from root to \(p \). So one point is stored \(O(\lg n) \) times: \(\implies O(n \lg^2 n) \) space.
Range queries with the 2D Range Tree

- Find the split node x_{split} where the search paths for x_1 and x_2 split.
- Follow path root to x_{split}: for each node v to the right of the path, query its associated structure $T_{\text{assoc}}(v)$ with $[y_1,y_2]$.
- Follow path root to x_{split}: for each node v to the left of the path, query its associated structure $T_{\text{assoc}}(v)$ with $[y_1,y_2]$.

How long does this take?

Range queries with the 2D Range Tree

- How long does a range query take?
- There are $O(\log n)$ subtrees in between the paths.
- We query each one of them using its associated structure.
- Querying its T_{assoc} takes $O(\log n + k')$.
- Overall it takes $\sum O(\log n + k') = O(\log^2 n + k)$.

Comparison

<table>
<thead>
<tr>
<th>n</th>
<th>$\log n$</th>
<th>$\log^2 n$</th>
<th>\sqrt{n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>36</td>
<td>8</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>1024</td>
<td>10</td>
<td>100</td>
<td>32</td>
</tr>
<tr>
<td>4096</td>
<td>12</td>
<td>144</td>
<td>64</td>
</tr>
<tr>
<td>16384</td>
<td>14</td>
<td>196</td>
<td>128</td>
</tr>
<tr>
<td>65536</td>
<td>16</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>1M</td>
<td>20</td>
<td>450</td>
<td>1K</td>
</tr>
<tr>
<td>16M</td>
<td>24</td>
<td>576</td>
<td>4K</td>
</tr>
</tbody>
</table>

3D Range Trees

- $P =$ set of points in 3D
- $\text{3DRangeTree}(P)$
 - Construct a BBST on x-coord
 - Each node v will have an associated structure that's a 2D range tree for $P(v)$ on the remaining coords.
3D Range Trees

Size:
- An associated structure for n points uses $O(n \log n)$ space. Each point is stored in all associated structures of all its ancestors $\Rightarrow O(n \log^2 n)$

Let's try this recursively
- Let $S(n)$ be the size of a 3D Range Tree of n points
- Find a recurrence for $S(n)$
- Think about how you build it: you build an associated structure for P that's a 2D range tree; then you build recursively a 3D range tree for the left and right half of the points
- $S(n) = 2S(n/2) + S(n)$
- This solves to $O(n \log^2 n)$

3D Range Trees

Build time:
- Think recursively
- Let $B(n)$ be the time to build a 3D Range Tree of n points
- Find a recurrence for $B(n)$
- Think about how you build it: you build an associated structure for P that's a 2D range tree; then you build recursively a 3D range tree for the left and right half of the points
- $B(n) = 2B(n/2) + B(n)$
- This solves to $O(n \log n)$

3D Range Trees

Query:
- Query BBST on x-coord to find $O(\log n)$ nodes
- Then perform a 2D range query in each node

Time?
- Let $Q(n)$ be the time to answer a 3D range query
- Find a recurrence for $Q(n)$
- $Q(n) = O(\log n) + O(\log n) - Q(n)$
- This solves to $O(\log^3 n + k)$

Comparison RangeTree and kdtree

<table>
<thead>
<tr>
<th>n</th>
<th>$\log n$</th>
<th>$\log^2 n$</th>
<th>$n^{7/4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>10</td>
<td>10,000</td>
<td>181</td>
</tr>
<tr>
<td>65,536</td>
<td>16</td>
<td>65,536</td>
<td>4096</td>
</tr>
<tr>
<td>1M</td>
<td>20</td>
<td>160,000</td>
<td>32,768</td>
</tr>
<tr>
<td>1G</td>
<td>30</td>
<td>810,000</td>
<td>5,931,641</td>
</tr>
<tr>
<td>1T</td>
<td>40</td>
<td>2,560,000</td>
<td>1G</td>
</tr>
</tbody>
</table>