Algorithms for GIS:

Terrain simplification
Digital terrain models in GIS

grid (raster)

TIN
Data Sources: digitizing contour maps
Data Sources: satellite imagery

The resolution of satellite images varies depending on the instrument used and the altitude of the satellite's orbit. For example, the Landsat archive offers repeated imagery at 30 meter resolution for the planet, but most of it has not been processed from the raw data. Landsat 7 has an average return period of 16 days. For many smaller areas, images with resolution as high as 41 cm can be available.\[5\]

Satellite imagery is sometimes supplemented with aerial photography, which has higher resolution, but is more expensive per square meter. Satellite imagery can be combined with vector or raster data in a GIS provided that the imagery has been spatially rectified so that it will properly align with other data sets.
Data Sources: satellite imagery

Imaging satellites e.g.

- GeoEye
 - launched September 6, 2008
 - has the highest resolution imaging system and is able to collect images with a ground resolution of 0.41 meters (16 inches) in the black and white mode. It collects multispectral or color imagery at 1.65-meter resolution or about 64 inches.

- ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)
 - on board NASA’s satellite Terra, part of NASA’s EOS
satellite imagery

photogrammetry
altimetry
SAR interferometry
...

terrain topography

e.g. http://www.earsel.org/tutorials/Jac_03DEMghent_red.pdf
satellite imagery

photogrammetry
altimetry
SAR interferometry

terrain topography
satellite imagery

photogrammetry
altimetry
SAR interpherometry
...

terrain topography

ocean topography (bathymetry)
Want to take a look at the depths of the ocean without leaving your chair?

As a part of an effort to better compete with Google Maps, Bing just rolled out a significant update to its Maps platform, adding 13 million square kilometers of updated satellite imagery to its database.

Thanks to satellite imagery provided by TerraColor, the new images' resolution is 15 meters per pixel, providing coverage of the entire world.
Data Sources: (LIDAR) point clouds

- A point cloud is a set of data points in some coordinate system.
 - in 3D: \{(x,y,z)\}
- Created by 3D scanners or LIDAR/etc
- Many uses:
 - modeling of surfaces and objects
 - visualization, animation
 - medical imaging/computer tomography

from wiki page: https://en.wikipedia.org/wiki/Point_cloud
Data Sources: LIDAR point clouds
satellite imagery

LIDAR point cloud

surface model
satellite imagery

LIDAR point cloud

- point cloud to grid
- point cloud to TIN
- grid to TIN

surface model
Terrain simplification

• \(P = \{ (x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_n, y_n, z_n) \} \) a set of terrain elevation samples
 • For e.g. \(P \) could be a set of grid (aerial image) or in general a point cloud (from LIDAR)
 • sometimes called a “height field” (in graphics and vision)
• \(P \) + interpolation method \(\implies \) surface \(\text{Surf}(P) \) corresponding to \(P \)
Terrain simplification

- \(P = \{ (x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_n, y_n, z_n) \} \) a set of terrain elevation samples
 - For e.g. \(P \) could be a set of grid (aerial image) or in general a point cloud (from LIDAR)
 - sometimes called a “height field” (in graphics and vision)
- \(P + \) interpolation method \(\implies \) surface \(\text{Surf}(P) \) corresponding to \(P \)

\[
\begin{align*}
\text{Surf}(P) & \quad \text{P} \\
n \text{points} & \quad \text{P'} \\
\text{Surf}(P') & \quad \text{m points}
\end{align*}
\]

\(\text{dist}(\text{S}(P), \text{S}(P')) < \varepsilon \)

\(\varepsilon \) is a given error threshold

Simplification:

find an approximation \(\text{S}(P') \) which approximates \(\text{S}(P) \) within the desired error threshold using as few points as possible

\(\text{S}(P) \) has \(n \) points \(\implies \text{S}(P') \) has \(m \) points \((m \ll n) \)
Outline

• Grid-to-TIN
 • We’ll focus on grid-to-TIN simplification
 • The methods can be extended to deal with arbitrary (non-grid) data

• Point-cloud-to-TIN
• Point-cloud-to-grid
Grid to TIN
Motivation

- Grids
 - uniform resolution means a lot of data redundancy
 - grids get very large very fast

- Example:
 - Area if approx. 800 km x 800 km
 - Sampled at:
 - 100 resolution: 64 million points (128MB)
 - 30m resolution: 640 (1.2GB)
 - 10m resolution: 6400 = 6.4 billion (12GB)
 - 1m resolution: 600.4 billion (1.2TB)
Grid-to-TIN simplification

- **Methods**
 - Multi-pass decimation methods
 - start with P and discard points (one by one)
 - E.g.: Lee’s drop heuristic
 - Multi-pass refinement methods
 - start with an initial approximation and add points one by one
 - greedy insertion (e.g. Garland & Heckbert)
 - One-pass methods
 - pre-compute importance of points
 - select points that are considered important features and triangulate them
 - based on quad trees or kd-trees
Decimation: Lee’s drop heuristic
Refinement: Greedy insertion

Notation:
- P = set of grid points
- P' = set of points in the TIN
- $\text{TIN}(P')$: the TIN on P'

Algorithm:
- $P = \{\text{all grid points}\}, \ P' = \{\text{4 corner points}\}$
- Initialize TIN to two triangles with corners as vertices
- while not DONE() do
 - for each point p in P, compute $\text{error}(p)$
 - select point p with largest $\text{error}(p)$
 - insert p in P', delete p from P, and update $\text{TIN}(P')$

DONE() :: return (max error below given epsilon) ? TRUE; FALSE;
Greedy insertion

• Come up with a straightforward implementation of the generic greedy insertion and analyze its running time.

• Assume straightforward triangulation:
 • when inserting a point in a triangle, split the triangle in 3
Greedy insertion

| Iteration | $|P|\,\,\text{vertices}$ | $|P'|\,\,\text{vertices}$ |
|-------------|--------------------------|--------------------------|
| iteration 1 | n | $4 = O(1)$ |
| iteration 2 | $n-1$ | $1 + O(1)$ |
| iteration k | $n-k$ | $2 + O(1)$ |
| | . | . |
| | . | . |
| at the end | $n-m$ | m |

- **Note:**
 - m = nb of vertices in the simplified TIN at the end (when error of P' falls below epsilon)
 - usually m is a fraction of n (e.g. 5%)
Greedy insertion— VERSION 1

Algorithm:
• \(P = \{\text{all grid points}\}, P' = \{4 \text{ corner points}\} \)
• Initialize TIN to two triangles with 4 corners as vertices
• while not DONE() do
 • for each point \(p \) in \(P \), compute error(\(p \))
 • select point \(p \) with largest error(\(p \))
 • insert \(p \) in \(P' \), delete \(p \) from \(P \) and update TIN(\(P' \))
 • create 3 new triangles
 • find triangle that contains \(p \) and compute the vertical difference in height between \(p \) and its interpolation on the triangle
Greedy insertion— VERSION 1

Algorithm:

- \(P = \{ \text{all grid points} \}, \ P' = \{ \text{4 corner points} \} \)
- Initialize TIN to two triangles with 4 corners as vertices
- while not DONE() do
- for each point \(p \) in \(P \), compute error(p)
- select point \(p \) with largest error(p)
- insert \(p \) in \(P' \), delete \(p \) from \(P \) and update TIN(P')
- create 3 new triangles

ANALYSIS: At iteration \(k \): we have \(O(n-k) \) points in \(P \), \(O(k) \) points in \(P' \)

- RE-CALCULATION
 - compute the error of a point: must search through all triangles to see which one contains it
 - compute errors of all points \(\Rightarrow O(n-k) \times O(k) \)

- SELECTION: select point with largest error: \(O(n-k) \)

- INSERTION: insert \(p \) in \(P' \), update TIN \(\Rightarrow O(1) \)
 - unless each point stores the triangle that contains it, need to find the triangle that contains \(p \)
 - for a straightforward triangulation: split the triangle that contains \(p \) into 3 triangles \(\Rightarrow O(1) \) time
Greedy insertion— VERSION 1

Analysis worst case:

- iteration k: \(O((n-k) \times k) + O(n-k) + O(1) \)

 - RE-CALC
 - SELECT
 - INSERT

- overall: \(\text{SUM \{ (n-k) \times k \}} = \ldots = O(m^2n) \)

- Note: dominant cost is re-calculation of errors (which includes point location)

More on point location:

- to locate the triangle that contains a given point, we “walk” (traverse) the TIN from triangle to triangle, starting from a triangle on the boundary (aka DFS on the triangle graph).
- we must be very unlucky to always take \(O(k) \)
- simple trick: start walking the TIN from the triangle that contained the previous point.
 - because points in the grid are spatially adjacent, most of the time a point will fall in the same triangle as the previous point or in one adjacent to it
- average time for point location will be \(O(1) \)
Greedy insertion— VERSION 1

Worst-case: $O(m^2n)$

- iteration k: $O(n-k) \times O(k) + O(n-k) + O(1)$

 - RE-CALC SELECT INSERT

- overall: $\text{SUM} \{O(n-k) \times k\} = O(m^2n)$

Average case: $O(mn)$

- trick to seed up point location \implies average time for point location will be $O(1)$

- iteration k: $O(n-k) \times O(1) + O(n-k) + O(1)$

 - RE-CALC SELECT INSERT

- $\text{SUM} \{O(n-k)\} = O(mn)$
Greedy insertion— VERSION 2

Observation: Only the points that fall inside triangles that have changed need to re-compute their error.

- Re-compute errors ONLY for points whose errors have changed
- Each point p in P stores its error, error(p)
- Each triangle stores a list of points inside it

Algorithm:
- \(P = \{ \text{all grid points} \}, \ P' = \{ 4 \text{ corner points} \} \)
- Initialize TIN to two triangles with 4 corners as vertices
- while not DONE() do
 - for each point p in P, compute error(p)
 - select point p with largest error(p)
 - insert p in \(P' \), delete p from P and update TIN(\(P' \))
 - create 3 new triangles
 - for all points in triangle that contains p:
 - find the new triangles where they belong, re-compute their errors
Greedy insertion—VERSION 2

Worst-case: $O(mn)$

- iteration k: $- + O(n-k) + O(1) + O(n-k) \times O(1)$
 - RE-CALC
 - SELECT
 - INSERT + re-calc

- overall: $\sum \{O(n-k)\} = O(mn)$

Average case: $O(mn)$

- if points are uniformly distributed in the triangles $\Rightarrow O((n-k)/k)$ points per triangle
- iteration k: $- + O(n-k) + O(1) + O((n-k)/k) \times O(1)$
 - RE-CALC
 - SELECT
 - INSERT + re-calc

- $\sum \{O(n-k) + O((n-k)/k)\} = O(mn)$

SELECTION will be dominant!
Greedy insertion— VERSION3

- Version 2, re-calculation goes down and selection becomes dominant
- Version 3: improve selection
 - store a heap of errors of all points in P

Algorithm:
- \(P = \{ \text{all grid points} \}, \ P' = \{ \text{4 corner points} \} \)
- Initialize TIN to two triangles with 4 corners as vertices
- while not DONE() do
 - use heap to select point \(p \) with largest error(\(p \))
 - insert \(p \) in \(P' \), delete \(p \) from \(P \) and update TIN(\(P' \))
 - for all points in the triangle that contains \(p \):
 - find the new triangles where they belong, re-compute their errors
 - update new errors in heap
Greedy insertion— VERSION 3

Worst-case: $O(mn \lg n)$

- iteration k: $- + O(\lg (n-k)) + O(1) + O(n-k) \times O(\lg (n-k))$

 RE-CALC \hspace{1cm} SELECT \hspace{1cm} INSERT + re-calc

- overall: $\text{SUM } \{(n-k) \lg (n-k)\} = O(mn \lg n)$

Average case: $O((m+n) \lg^2 n)$

- if points are uniformly distributed in the triangles $\implies O((n-k)/k)$ points per triangle
- iteration k: $- + O(\lg (n-k)) + O(1) + O((n-k)/k) \times O(\lg (n-k))$

 RE-CALC \hspace{1cm} SELECT \hspace{1cm} INSERT + re-calc

- $\text{SUM } \{\lg (n-k) + O((n-k)/k\} = O((m+n) \lg^2 n)$

heap updates will be dominant!
Greedy insertion— VERSION 4

• Version 3: selection is down, but updating the heap is now dominant

• Version 4: store in heap only one point per triangle (point of largest error)

Algorithm:

• \(P = \{ \text{all grid points} \}, \ P' = \{ \text{4 corner points} \} \)

• Initialize TIN to two triangles with 4 corners as vertices

• while not DONE() do
 • use heap to select point \(p \) with largest error\((p)\)
 • insert \(p \) in \(P' \), delete \(p \) from \(P \) and update TIN\((P')\)
 • for all points in the triangle that contains \(p \):
 • find the new triangles where they belong, re-compute their errors
 • find point with largest error per triangle
 • add these points (one per triangle) to the heap
Greedy insertion— VERSION 4

Worst-case: $O(mn)$

- iteration k: $- + O(\lg k) + O(1) + O(n-k)\times O(1) + O(1) \times O(\lg k)$

- overall: $\sum \{\lg k + O(n-k)\} = O(mn)$

Average case: $O((m+n) \lg n)$

- if points are uniformly distributed in the triangles $\Rightarrow O((n-k)/k)$ points per triangle

- iteration k: $- + O(\lg k) + O(1) + O((n-k)/k) \times O(1) + O(1) \times O(\lg k)$

- $\sum \{\lg k + O((n-k)/k)\} = O((m+n) \lg n)$
Triangulations

- The straightforward way to triangulate when adding new points runs in $O(1)$ time but will create long and skinny triangles
Triangulations

- The straightforward way to triangulate when adding new points runs in $O(1)$ time but will create long and skinny triangles
The straightforward way to triangulate when adding new points runs in $O(1)$ time but will create long and skinny triangles.
Triangulations

- The straightforward way to triangulate when adding new points runs in $O(1)$ time but will create long and skinny triangles.
Triangulations

- The straightforward way to triangulate when adding new points runs in $O(1)$ time but will create long and skinny triangles
The straightforward way to triangulate when adding new points runs in $O(1)$ time but will create long and skinny triangles.
Triangulations

- The straightforward way to triangulate when adding new points runs in $O(1)$ time but will create long and skinny triangles
- Small angles cause troubles!
Triangulations

- The straightforward way to triangulate when adding new points runs in $O(1)$ time but will create long and skinny triangles.
- Small angles cause troubles!
- Good meshes have uniform triangles and angles that are neither too small nor too large.
Triangulation
Triangulation

- A triangulation of a point set P in 2D is a triangulation of the convex hull of P.
Triangulation

- A triangulation of a point set P in 2D is a triangulation of the convex hull of P.
Triangulation

- A triangulation of a point set P in 2D is a triangulation of the convex hull of P
Triangulation

• Many ways to triangulate a set of points P
Triangulation

• Many ways to triangulate a set of points P

• Different ways to evaluate a triangulation
 • minimum angle
 • maximum degree
 • sum of edge lengths
 • …

• Algorithms for various kinds of optimal triangulations are known.

• A triangulation that maximizes the minimum angle across all triangles is called the Delaunay triangulation and can be computed in $O(n \log n)$ time.
Greedy insertion with Delaunay triangulation

Algorithm:

- $P = \{\text{all grid points}\}$, $P' = \{4 \text{ corner points}\}$
- Initialize TIN to two triangles with corners as vertices
- while not DONE() do
 - for each point p in P, compute $\text{error}(p)$
 - select point p with largest $\text{error}(p)$
 - insert p in P', delete p from P, and update TIN(P')

 maintain TIN as a Delaunay triangulation of P'
Brainstorming: Point-cloud-to-TIN ?
Brainstorming: Point-cloud-to-TIN?
Algorithm:

- $P = \{\text{all grid points}\}$, $P' = \{4 \text{ corner points}\}$
- Initialize TIN to two triangles with corners as vertices
- while not DONE() do
 - for each point p in P, compute $\text{error}(p)$
 - select point p with largest $\text{error}(p)$
 - insert p in P', delete p from P, and update $\text{TIN}(P')$
Brainstorming: Point-cloud-to-grid?
Brainstorming: Point-cloud-to-grid?

California Lidar data

http://www.opentopography.org/images/opentopo_images/garlock_slope.jpg
Brainstorming: Point-cloud-to-grid?

Given a point-cloud P and a desired grid spacing, compute a grid that represents P.
Given a point-cloud P and a desired grid spacing, compute a grid that represents P.
Brainstorming: Point-cloud-to-grid?

Given a point-cloud P and a desired grid spacing, compute a grid that represents P.
Brainstorming: Point-cloud-to-grid?

Sketch an algorithm to compute a grid given a point cloud and a desired resolution. Analyze it.