Spatial data:
Models and representation

Laura Toma

CSCI 3225
Algorithms for GIS
Bowdoin College
Overview

- Spatial data
- Networks
- Terrains in GIS
 - Grids
 - TINs
 - Data structures for TINs
 - Grid or TIN?
- Planar maps and meshes
 - Data structures for meshes
Spatial data in GIS

- Point data

Nuclear Power Sites of the World
Status as of 31 December 1999

Projection: Geographic
Spatial data in GIS

- Line data: NETWORKS

river network
Spatial data in GIS

- Line data: NETWORKS

River network in Tapi basin
Spatial data in GIS

- Line data: NETWORKS

train/bus/road network
Spatial data in GIS

- Polygons: PLANAR MAPS

state boundaries
Spatial data in GIS

- Polygons: PLANAR MAPS

state boundaries
Definition:
A graph is called **planar** if it can be drawn in the plane such that no two edges intersect except at their endpoints. Such a drawing is called a planar embedding of the graph.

Two drawings of the same graph. Since there exists a planar embedding, the graph is planar.

Note: It’s possible to draw non-planar embeddings of planar graphs.
Definition:
A graph is called **planar** if it can be drawn in the plane such that no two edges intersect except at their endpoints. Such a drawing is called a planar embedding of the graph.

Note: Edges can be represented as simple curves in the drawing.
Detour

- A planar graph introduces a subdivision of the plane into regions called faces, which are polygons bounded by the graph’s edges.
Some results:

- Any planar graph has a planar straight-line drawing where edges do not intersect [Fary's theorem].

- A graph is planar iff it has no subgraphs isomorphic with K5 or K3,3 [Kuratowski's theorem].

- A graph is planar iff it has a dual graph.

- Any planar graph has at least one vertex of degree ≤ 5.

- There are a number of efficient algorithms for planarity testing that run in $o(n^3)$, but are difficult to implement.
Spatial data in GIS

- TERRAINS
 - A surface such that any vertical line intersects it in at most one point (in CG terms: xy-monotone)
A polygonal chain (polyline) is x-monotone if any vertical line intersects it at most once.

A polyline is monotone wrt a line l if any line perpendicular to l intersects it at most once.
Spatial data in GIS

- **Terrains**
 - A surface such that any vertical line intersects it in at most one point (in CG terms: xy-monotone)
Suppose we have to solve a problem on networks/maps/terrains: what is a good representation?
Networks
Data structures for networks

- **First attempt**
 - list of points, each point stores its coordinates
 - list of segments, each segment stores pointers to its vertices

What do we expect to do with a network?
- traverse paths
- find all vertices adjacent to a given vertex,…

First attempt:
- points = \{ a:(x_a, y_a), b:(x_b, y_b), c:(x_c, y_c), d:(x_d, y_d) \}
- segments = \{ (a, b), (b, c), (c, d) \}
- Assume you want to traverse a path starting at point a:
 - search through the segment list looking for a segment with startpoint a; you find (a,b)
 - search through the segment list looking for another segment with startpoint b; you find (b,c)
Data structures for networks

- First attempt
 - list of points, each point stores its coordinates
 - list of segments, each segment stores pointers to its vertices

- Not efficient!
 - need a data structure that allows to traverse paths efficiently

What do we expect to do with a network?
- traverse paths
- find all vertices adjacent to a given vertex, …
Data structures for networks

- **Second attempt**
 - a network is a graph!
 - use adjacency list (matrix, if dense)

- Usually raw data comes without explicit topology
 - spaghetti data/ data structure (data is like spaghetti, no structure and they all mingle together)
 - need to build the adjacency list corresponding to raw data

- What do we expect to do with a network?
 - traverse paths
 - find all vertices adjacent to a given vertex,…
Data structures for networks

Assume you download raw data for a (directed) network as a file, which contains a set of edges and their endpoints.

1. Describe how you would build an adjacency list from it.
2. Estimate the amount of memory you need for your structure.

Analyze function of \(|V|\) vertices and \(|E|\) edges.

- file = \{(xa, ya), (xb, yb), (xc, yc), (xd, yd), (xb, yb), (xc, yc), (xc, yc), (xd, yd)\}
Terrains
Digital terrain models

- Watershed maps
 - Risks of floods, landslides, eruptions, erosion

- Visibility maps
 - Costs/benefits of roads, buildings, dikes, hydropower plants, solar power plants
 - Possible locations of (pre-)historical roads and settlements

- Least-cost paths
 - Analysis of animal behaviour and evolution
Digital terrain models
Digital terrain models
Digital terrain models

triangular mesh

or

TIN (triangular irregular network)
Digital terrain models

- Grid = 2D array of values
- Grids need an interpolation method
 - nearest neighbor
 - linear
 - bilinear, splines, krigging, IDW, etc
Grids with nearest neighbor interpolation
Grids with linear interpolation
Grids (+ linear interpolation) can be viewed as TINs
Grids

- Grid data easy to obtain from aerial imagery
 - rasters = images (image: grid of color pixels)
 - massive amounts of aerial imagery available
 - SAR interferometry: by combining Synthetic Aperture Radar (SAR) images of the same area it is possible to generate elevation maps
Grid elevation data sources

- **USGS**

- **SRTM 90m elevation data for entire world**
 - can download tiles anywhere in the world
 - SRTM 30m data available for the entire USA (50+GB)

- ... many others
Digital terrain models: Grid or TIN?
Digital terrain models: Grid or TIN?

<table>
<thead>
<tr>
<th>Grid</th>
<th>TIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros:</td>
<td>Pros:</td>
</tr>
<tr>
<td>• implicit topology</td>
<td>• variable resolution</td>
</tr>
<tr>
<td>• implicit geometry</td>
<td>• potentially space efficient</td>
</tr>
<tr>
<td>• simple algorithms</td>
<td>• Cons:</td>
</tr>
<tr>
<td>• readily available in this form</td>
<td>• need to build and store topology</td>
</tr>
<tr>
<td>Cons:</td>
<td>• stored topology takes space</td>
</tr>
<tr>
<td>• uniform resolution ==> space waste</td>
<td>• more complex programming (pointers..);</td>
</tr>
<tr>
<td>• space becomes prohibitive as resolution increases</td>
<td></td>
</tr>
</tbody>
</table>
Digital terrain models: Grid or TIN?

Consider a 300km by 300km area to be represented as a grid/raster. How big (how many points) is the grid at:

A. 100m resolution
B. 10m resolution
C. 1m resolution

Compute space requirement for a grid of 100x100=10,000 points; and for a TIN of 1000 points.

• How do we store a TIN??
Data structures for TINs

What do we expect to do on a TIN?

- walk along an edge/triangle path
- given an edge, find the two faces that are adjacent to this edge
- walk along the boundary of a face (triangle)
- find all edges and all triangles incident to a point

A good data structure for TINs should do these fast
Data structures for TINs

- Simplified versions of more general structures

Edge-based
- arrays of vertices, edges, triangles
- every vertex stores:
 - its coordinates
- every edge stores:
 - 2 references to its adjacent vertices
 - 2 references to its adjacent triangles
- every triangle stores:
 - 3 references to its 3 edge

Triangle-based
- arrays of vertices and triangles (edges are not stored explicitly)
- every vertex stores:
 - its coordinates
- every triangles stores:
 - 3 references to its incident vertices
 - 3 references to its adjacent triangles

- Note: CGAL uses triangle-based
Data structures for TINs

edge-based

triangle-based
Assume we have a triangulation with n points. How much memory do we need to store it in a topological structure?

- edge-based
- triangle-based
Assume we have a triangulation with n points. How much memory do we need to store it in a topological structure?

- edge-based
- triangle-based

The first issue is: what is the number of edges and triangles?
- We can get bounds using Euler’s formula
Euler formula:
The following relation exists between the number of edges, vertices and faces in a connected planar graph: \(v - e + f = 2 \).

- **Notes:**
 - \(v-e+f -c =1 \) for \(c \) connected components
 - also true for any convex polyhedral surface in 3D
 - the Euler characteristic \(X = v - e + f \) is an invariant that describes the shape of space; it is \(X=2 \) for planar graphs, convex polyhedra, etc; can be extended to topological spaces.
Detour

- From Euler formula we know \(n-e+f = 2 \)
- Furthermore, each triangle has 3 edges and each edge is in precisely 2 triangles (assuming the outside face as a triangle). This means \(3f = 2e \).
- We get:
 - the number of faces in a triangulation with \(n \) vertices is \(f = 2n-4 \)
 - the number of edges in a triangulation with \(n \) vertices is \(e = 3n-6 \)
- If the outside face is not triangulated it can be shown that
 - \(e < 3n-6 \), \(f < 2n-4 \)
- Intuition: Given \(n \) points, the planar graph with largest number of edges and faces is a complete triangulation.

Theorem:
A triangulation with \(n \) vertices has at most 3n-6 edges and at most 2n-4 faces.
Assume we have a triangulation with n points. How much memory do we need to store it in a topological structure?

- edge-based
- triangle-based
Planar maps and meshes
Planar maps and meshes

- Planar maps (2D) and terrain meshes (3D) are very similar.
 - the 2D projection of a terrain mesh is a planar map
- What is a good data structure for planar maps/meshes?
Detour: Meshing

- Big research area; Meshes used in modeling
- Big question:
 - Small angles cause numerical instability
 - Chose points to maximize minimum angle, trade off number of points with size of angle

http://pre09.deviantart.net/bcb0/th/pre/f/2007/264/e/a/terrain_mesh_by_sordith.jpg
Meshes for arbitrary 3D surfaces

http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/meshes/polygon_mesh_images/trike.jpg
Meshes for arbitrary 3D surfaces

http://magsoft.dinauz.org/images/sourceCode/PPMCcap2.png
Meshes for arbitrary 3D surfaces

http://0.s3.envato.com/files/18578606/Skull_BaseMesh_590x590_JPG_PREVIEW.jpg
Meshes for arbitrary 3D surfaces

http://www.carbodydesign.com/media/2013/06/Pininfarina-Sergio-Concept-Polygonal-Mesh-3D-Model.jpg
Data structures for polygonal meshes

• First attempt:
 • list of vertices; each vertex stores in coordinates
 • list of face, each face storing pointers to its vertices

• Ok for some application (maybe), but does not store the topology
 • e.g. how do we walk from one face to another in this mesh?
 • which faces use this vertex?
 • which faces border this edge?
 • which edges border this face?
 • which faces are adjacent to this face?
Data structures for polygonal meshes

- Winged-edge data structure [Baumgart]
 - lists of vertices, edges and faces
 - each vertex stores:
 - its coordinates
 - a pointer to one edge incident to this vertex
 - each face stores:
 - a pointer to one edge along the boundary of this face
 - each edge stores
 - pointers to its two vertices
 - pointers to its left and right faces
 - predecessor and successor of this edge when traversing its left face
 - predecessor and successor of this edge when traversing its right face

Note: direction of an edge only used to establish left and right; each face oriented clockwise; the 4 edges are the wings.

- Exercise: size..? how many bytes per edge?…total?
Winged-edge data structure

• Can answer adjacency queries
 • list edges and vertices on a face.
 • how?
 • list all edges incident on a vertex
 • how
 • are two faces adjacent?
 • how?
 • etc
• Not all queries are $O(1)$

• Does not work for surfaces with holes
 • can be fixed e.g. by being careful how you orient the boundary…

• Links:
 • http://www.baumgart.org/winged-edge/winged-edge.html
Data structures for polygonal meshes

- **Half-edge data structure**
 - an edge = a pair of half edges
 - the half edges that border a face form a circular list
 - assume all faces are oriented the same way (say cw)

- each vertex stores:
 - its coordinates
 - a pointer to exactly one half edge starting from this vertex

- each face stores:
 - a pointer to one of the half-edges that borders it

- each half-edge stores:
 - a pointer to the face it borders
 - a pointer to its endpoint
 - a pointer to twin half-edge
 - a pointer to next half-edge around the face

- Exercise: size..? how many bytes per edge?...total?

Half-edge data structure

struct HE_edge
{
 HE_vert* vert; // vertex at the end of the half-edge
 HE_edge* pair; // oppositely oriented adjacent half-edge
 HE_face* face; // face the half-edge borders
 HE_edge* next; // next half-edge around the face
};

struct HE_edge
{
 HE_vert* vert; // vertex at the end of the half-edge
 HE_edge* pair; // oppositely oriented adjacent half-edge
 HE_face* face; // face the half-edge borders
 HE_edge* next; // next half-edge around the face
};

struct HE_vert {
 float x;
 float y;
 float z;

 HE_edge* edge; // one of the half-edges emanating from the vertex
};

struct HE_face {
 HE_edge* edge; // one of the half-edges bordering the face
};

Half-edge data structure

Can answer adjacency queries:

- Find the vertices of a half-edge e
 e->vert, and e->twin->vert

- Find the two faces that border half-edge e
 e->face, e->twin->face

- Iterate the edges along a face f
 e = f->edge
 do {
 ...
 e = e->next
 } while (e != f->edge)

- Iterate over the edges adjacent to a vertex v
 e = v->edge;
 do {
 ...
 e = e->next
 } while (e != v->edge)

- are two faces adjacent?
- are two vertices adjacent?
- what are all faces that use this vertex?
Topological structures for polygonal meshes

- Can answer basic adjacency queries fast (O(1) if possible)
- But
 - use a lot of space !!!
 - need to be constructed from raw data
 - involve more complex programming
Spatial data terminology

Vector model
Data stored as points, lines and polygons in an appropriate data structure

Raster model
Data stored as grid of values