csci 210: Data Structures

Maps and Hash Tables
Summary

• Topics
 • the Map ADT
 • hash tables and hashing
Map ADT

• A Map is an abstract data structure (ADT)
 • it stores key-value \((k,v)\) pairs
 • there cannot be duplicate keys

• Maps are useful in situations where a key can be viewed as a unique identifier for the object
 • the key is used to decide where to store the object in the structure.
• Maps are sometimes called associative arrays

Map ADT

• size()
• isEmpty()
• get\((k) \):
 • if \(M\) contains an entry with key \(k\), return it; else return null
• put\((k,v) \):
 • if \(M\) does not have an entry with key \(k\), add entry \((k,v)\) and return null
 • else replace existing value of entry with \(v\) and return the old value
• remove\((k) \):
 • remove entry \((k,*)\) from \(M\)

this can be viewed as searching for key \(k\)
this can be viewed as inserting key \(k\)
this can be viewed as deleting key \(k\)
Java.util.Map

- check out the interface

- additional handy methods
 - putAll
 - entrySet
 - containsValue
 - containsKey
Map example

(k,v) key=integer, value=letter

M={}

- put(5,A) M={(5,A)}
- put(7,B) M={(5,A), (7,B)}
- put(2,C) M={(5,A), (7,B), (2,C)}
- put(8,D) M={(5,A), (7,B), (2,C), (8,D)}
- put(2,E) M={(5,A), (7,B), (2,E), (8,D)}
- get(7) return B
- get(4) return null
- get(2) return E
- remove(5) M={(7,B), (2,E), (8,D)}
- remove(2) M={(7,B), (8,D)}
- get(2) return null
Map example

(k,v) key=string, value=string

• put("Dan", <Dan’s favorite tune>)
• put("John", <John’s favorite song>)
• put(<Helen, <Helen’s favorite song>)
• ...
• get ("Dan")
• get ("Helen")
Example

- Let’s say you want to implement a language dictionary. That is, you want to store words and their definition. You want to insert words to the dictionary, and retrieve the definition given a word.

- Options:
 - vector
 - linked list
 - binary search tree
 - map

- The map will store (word, definition of word) pairs.
- key = word
 - note: words are unique
- value = definition of word
- get(word)
 - returns the definition if the word is in dictionary
 - returns null if the word is not in dictionary
Class-work

• Write a program that reads from the user the name of a text file, counts the word frequencies of all words in the file, and outputs a list of words and their frequency.
 • e.g. text file: article, poem, science, etc

• Questions:
 • Think in terms of a Map data structure that associates keys to values.
 • What will be your <key-value> pairs?

 • Sketch the main loop of your program.
Map Implementations

- Arrays (Vector, ArrayList)
- Linked-list
- Binary search trees
- Hash tables
A LinkedList implementation of Maps

- store the (k,v) pairs in a doubly linked list

- get(k)
 - hop through the list until find the element with key k

- put(k,v)
 - Node x = get(k)
 - if (x ! = null)
 - replace the value in x with v
 - else create a new node(k,v) and add it at the front

- remove(k)
 - Node x = get(k)
 - if (x == null) return null
 - else remove node x from the list
 - Note: why doubly-linked? need to delete at an arbitrary position

- Analysis:
 - assume a map with n elements
Map Implementations

- **Linked-list:**
 - get/search, put/insert, remove/delete: $O(n)$

- **Binary search trees**
 <--------- we’ll talk about this later
 - search, insert, delete: $O(n)$ if not balanced
 - $O(lg\ n)$ if balanced BST

- **Hash tables:**
 - we’ll see that (under some assumptions) search, insert, delete: $O(1)$
Hashing

• A completely different approach to searching from the comparison-based methods (binary search, binary search trees)

 • hashing tries to reference an element in a table directly based on its key (rather than navigating through a dictionary data structure comparing the search key with the elements)

 • hashing transforms a key into a table address
Hashing

• If the keys were integers in the range 0 to 99
• The simplest idea:
 • store keys in an array H[0..99]

 H initially empty
 • put(k, value)
 • store <k, value> in H[k]
 • get(k)
 • check if H[K] is empty

Issues:
- This works if keys are integers in a small range
- Space may be wasted if H is not full
• Hashing has 2 components
 • the hash table: an array A of size N
 • Can think of each entry as a bucket (a bucket array)
 • a hash function: maps each key to a bucket
 • h is a function: $\{\text{all possible keys}\} \rightarrow \{0, 1, 2, ..., N-1\}$
 • key k is stored in bucket $h(k)$

![Hashing Diagram]

- The size of the table N and the hash function are decided by the user
Example

- keys: integers
- chose $N = 10$
- chose $h(k) = k \mod 10$
 - $k \mod 10$ is the remainder of $k/10$

```
0 1 2 3 4 5 6 7 8 9
```

- add $(2,*), (13,*), (15,*), (88,*), (2345,*), (100,*)$

- Collision: two keys that hash to the same value
 - e.g. 15, 2345 hash to slot 5

- Note: if we were using direct addressing: $N = 2^{32}$. Unfeasible.
Hashing

The user needs to choose N and the hash function

- $h: \{\text{universe of all possible keys}\} \rightarrow \{0,1,2,...,N-1\}$
- The keys need not be integers
 - e.g. strings: define a hash function that maps strings to integers
- The universe of all possible keys need not be small
 - e.g. strings
Hashing

The user needs to chose N and the hash function

- \(h : \{\text{universe of all possible keys}\} \rightarrow \{0,1,2,...,N-1\} \)

- Hashing is an example of space-time trade-off:
 - if there were no memory (space) limitation, simply store a huge table
 - \(O(1) \) search/insert/delete and a lot of space
 - if there were no time limitation, use a linked list and search sequentially
 - \(O(n) \) search/insert/delete and \(O(n) \) space

- Hashing: use a reasonable amount of memory and strike a balance space-time
 - adjust hash table size

- Under some assumptions, hashing supports insert, delete and search in \(O(1) \) time and \(O(n) \) space
Hashing

- **Notation:**
 - $U =$ the universe of keys
 - e.g. $U =$ set of all integers
 - $|U| =$ the size of the universe of keys
 - e.g. $|U| = 2^{32}$
 - $N =$ hash table size
 - $n =$ number of entries
 - note: n may be unknown beforehand
Collisions

- Collision: two keys that hash to the same value

- Collision handling: Decide how to handle when two keys hash to the same address

- Note: if $n > N$ there must be collisions

- Collision with chaining
 - bucket arrays

- Collision with probing
 - linear probing
 - quadratic probing
 - double hashing
Collisions with chaining

- Store all elements that hash to the same entry in a linked list (array/vector)

 - Insert(k)
 - insert k in the linked list of h(k)

 - Search(k)
 - search in the linked list of h(k)

 - Delete(k)
 - find and delete k from the linked list of h(k)

Can chose to store the lists in sorted order or not
Collisions with chaining

- **Pros:**
 - can handle arbitrary number of collisions as there is no cap on the list size
 - don’t need to guess \(n \) ahead: if \(N \) is smaller than \(n \), the elements will be chained

- **Cons:** space waste
 - use additional space in addition to the hash table
 - if \(N \) is too large compared to \(n \), part of the hash table may be empty

- **Choosing \(N \):** space-time tradeoff

- **Rule of thumb:**
 - chose \(N \) as \(1/5 \) to \(1/10 \) of the number of keys that we expect in the table, so that keys are expected to have about 10 elements each. Keep lists unsorted.
Collisions with probing

- Idea: do not use extra space, use only the hash table

- Idea: when inserting key k, if slot $h(k)$ is full, then try some other slots in the table until finding one that is empty
 - the set of slots tried for key k is called the probing sequence of k

- Linear probing:
 - if slot $h(k)$ is full, try next, try next, ...
 - probing sequence: $h(k)$, $h(k) + 1$, $h(k) + 2$, ...

- insert(k)
- search(k)
- delete(k)

- Example: $N = 10$, $h(k) = k \% 10$, collisions with linear probing
 - insert 1, 7, 4, 13, 23, 25, 25
Linear probing

• Notation: $\alpha = n/N$ (load factor of the hash table)

• In general performance of probing degrades inversely proportional with the load of the hash
 • for a sparse table (small α) we expect most searches to find an empty position within a few probes
 • for a nearly full table (alpha close to 1) a search could require a large number of probes

• It is known that: Under certain randomness assumption it can be shown that the average number of probes examined when searching for key k in a hash table with linear probing is $1/2 \ (1 + 1/(1 - \alpha))$
 • $\alpha = 0$: 1 probe
 • $\alpha = 1/2$: 1.5 probes (half-full)
 • $\alpha = 2/3$: 2 probes (2/3 full)
 • $\alpha = 9/10$: 5.5 probes

• Collisions with probing: cannot insert more than N items in the table
 • need to guess n ahead
 • if at any point n is $> N$, need to re-allocate a new hash table, and re-hash everything. Expensive!
Linear probing

- **Pros:**
 - space efficiency

- **Cons:**
 - need to guess n correctly and set $N > n$
 - if alpha gets large ==> high penalty
 - the table is resized and all objects re-inserted into the new table

- Rule of thumb: good performance with probing if alpha stays less than 2/3.
Double hashing

- Empirically linear hashing introduces a phenomenon called clustering:
 - insertion of one key can increase the time for other keys with other hash values
 - groups of keys clustered together in the table

- Double hashing:
 - instead of examining every successive position, use a second hash function to get a fixed increment
 - probing sequence: $h_1(k), h_1(k) + h_2(k), h_1(k) + 2h_2(k), h_1(k) + 3h_2(k),...$

- Chose h_2 so that it never evaluates to 0 for any key
 - would give an infinite loop on first collision

- Rule of thumb:
 - chose $h_2(k)$ relatively prime to N

- Performance:
 - double hashing and linear hashing have the same performance for sparse tables
 - empirically double hashing eliminates clustering
 - we can allow the table to become more full with double hashing than with linear hashing before performance degrades
Hashing

- Choosing \(h \) and \(N \)
 - Goal: distribute the keys evenly throughout the hashtable
 - \(n \) is usually unknown

 - If \(n > N \), then the best one can hope for is that each bucket has \(O(n/N) \) elements
 - need a good hash function
 - search, insert, delete in \(O(n/N) \) time

 - If \(n \leq N \), then the best one can hope for is that each bucket has \(O(1) \) elements
 - need a good hash function
 - search, insert, delete in \(O(1) \) time

 - If \(N \) is large \(\Rightarrow \) less collisions and easier for the hash function to perform well
 - Best: if you can guess \(n \) beforehand, chose \(N \) order of \(n \)
 - no space waste
Hash functions

• How to define a good hash function?

• An ideal hash function approximates a random function: for each input element, every output should be in some sense equally likely
 • This is called “universal hashing”

• In general impossible to guarantee

• Every hash function has a worst-case scenario where all elements map to the same entry

• Hashing = transforming a key to an integer
• There exists a set of good heuristics
Hashing strategies

- **Summing components**
 - let the binary representation of key k = \(<x_0,x_1,x_2,\ldots,x_{k-1}>\)
 - use all bits of k when computing the hash code of k
 - sum the high-order bits with the low-order bits
 - (int) \(<x_0,x_1,x_2,\ldots,x_{31}> + (int)<x_{32},\ldots,x_{k-1}>\)
 - e.g. String s;
 - sum the integer representation of each character
 - (int)s[0] + (int)s[1] + (int)s[2] + ...
Hashing strategies

• summation is not a good choice for strings/character arrays
 - e.g. s1 = “temp10” and s2 = “temp01” collide
 - e.g. “stop”, “tops”, “pots”, “spot” collide

• Polynomial hash codes
 - k = \textless x_0, x_1, x_2, ..., x_{k-1}\textgreater
 - take into consideration the position of x[i]
 - chose a number a >0 (a \neq 1)
 - h(k) = x_0a^{k-1} + x_1a^{k-2} + ... + x_{k-2}a + x_{k-1}

• experimentally, a = 33, 37, 39, 41 are good choices when working with English words
 - produce less than 7 collision for 50,000 words!!!
 - Java hashCode for Strings uses one of these constants
Hashing strategies

- Need to take into account the size of the table
- Modular hashing
 - \(h(k) = i \mod N \)
 - If take \(N \) to be a prime number, this helps the spread out the hashed values

- If \(N \) is not prime, there is a higher likelihood that patterns in the distribution of the input keys will be repeated in the distribution of the hash values

- e.g. keys = \{200, 205, 210, 215, 220, ... 600\}
 - \(N = 100 \)
 - each hash code will collide with 3 others
 - \(N = 101 \)
 - no collisions
Hashing strategies

• Combine modular and multiplicative:
 • \(h(k) = a \times k \mod N \)
 • chose \(a = \) random value in [0,1]
 • advantage: the value of \(N \) is not critical and need not be prime

• empirically:
 • a popular choice is \(a = 0.618033 \) (the golden ratio)
 • chose \(N = \) power of 2
Hashing strategies

- Universal hashing
 - chose N prime
 - chose p a prime number larger than N
 - chose a, b at random from \{0,1,...p-1\}

 \[h(k) = ((a \cdot k + b) \mod p) \mod N \]

 - This gets very close to throwing the keys into the hash table randomly (two keys collide with probability 1/N), and thus leads to as few collisions as possible, on the average.

- Many other variations of these have been studied, particularly hash functions that can be implemented with efficient machine instructions such as shifting
Java.util.Hashtable

- This class implements a hash table, which maps keys to values. Any non-null object can be used as a key or as a value.

 - java.lang.Object
 - java.util.Dictionary
 - java.util.Hashtable

- implements Map

- [check out Java docs]
- implements a Map with linear probing; uses .75 as maximal load factor, and rehashes every time the table gets fuller

- Example

  ```java
  //create a hashtable of <key=string, value=number> pairs
  Hashtable numbers = new Hashtable();
  numbers.put("one", new Integer(1));
  numbers.put("two", new Integer(2));
  numbers.put("three", new Integer(3));

  //retrieve a string
  Integer n = (Integer)numbers.get("two");
  if (n != null) {
      System.out.println("two = " + n);
  }
  ```
Hash functions in Java

- The generic Object class comes with a default hashCode() method that maps an Object to an integer
 - int hashCode()
- Inherited by every Object
- The default hashCode() returns the address of the Object’s location in memory
 - too generic
 - poor choice for most situations
- Typically you want to override it
- e.g. class String
 - overrides String.hashCode() with a hash function that works well on Strings
• Best hashing method depends on application

• Probing is the method of choice if \(n \) can be guessed
 • Linear probing is fastest if table is sparse
 • Double hashing makes most efficient use of memory as it allows the table to become more full, but requires extra time to compute a second hash function
 • rule of thumb: load factor < .66

• Chaining is easiest to implement and does not need guessing \(n \)
 • rule of thumb: load factor < .9 for \(O(1) \) performance, but not vital

• Hashing can provide better performance than binary search trees if the keys are sufficiently random so that a good hash function can be developed
 • when hashing works, better use hashing than BST

• However
 • Hashing does not guarantee worst-case performance
 • Binary search trees support a wider range of operations
Exercises

• What is the worst-case running time for inserting \(n \) key-value pairs into an initially empty map that is implemented with a list?

• Describe how to use a map to implement the basic ops in a dictionary ADT, assuming that the user does not attempt to insert entries with the same key.

• Describe how an ordered list implemented as a doubly linked list could be used to implement the map ADT.

• Draw the 11-entry hash that results from using the hash function \(h(i) = (2i+5) \mod 11 \) to hash keys 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, 5.

 • (a) Assume collisions are handled by chaining.
 • (b) Assume collisions are handled by linear probing.
 • (c) Assume collisions are handled with double hashing, with the secondary hash function \(h'(k) = 7 - (k \mod 7) \).

• Show the result of rehashing this table in a table of size 19, using the new hash function \(h(k) = 2k \mod 19 \).

• Think of a reason that you would not use a hash table to implement a dictionary.