The Francis $1-2-3$ Theorem. Start with a positive integer r and produce an N-digit number J such that, beginning with r in the "ones" position, the other digits in J increase in increments of k as they fill higher orders of "tens" positions in J (e.g. $r=3, N=5, k=1$, then $J=76,543$).

Find the sum of J and its reverse, \hat{J} and denote that sum Q (e.g. $J=123$, then $\hat{J}=321$, and $Q=123+321$). Also find the sum of the digits in J (or \hat{J}) and denote that sum q.

Statement: The quotient of these two sums Q / q does not vary under any choice for r or k, and depends only on the choice for N

Proof. The integers J and \hat{J} can be described in a more general form as series:

$$
\begin{aligned}
& J=\sum_{n=0}^{N-1}[((N-1) k+r)-k n] 10^{n} \\
& \hat{J}=\sum_{n=0}^{N-1}(r+k n) 10^{n}
\end{aligned}
$$

and the sum of the digits in J (or \hat{J}) can also be put in series form:

$$
q=\sum_{n=0}^{N-1}(r+k n)=\sum_{n=0}^{N-1} r+k \sum_{n=0}^{N-1} n=N r+\frac{k(N-1) N}{2}
$$

The sum $J+\hat{J}$ can be written

$$
\begin{aligned}
Q=J+\hat{J} & =\sum_{n=0}^{N-1}[(N-1) k+r+(r+n k)-n k] 10^{n}=\sum_{n=0}^{N-1}[(N-1) k+2 r] 10^{n} \\
& =[(N-1) k+2 r] \sum_{n=0}^{N-1} 10^{n}
\end{aligned}
$$

so the quotient of the two sums

$$
Q / q=\frac{[(N-1) k+2 r] \sum_{n=0}^{N-1} 10^{n}}{N r+[(N-1) k(N) / 2]}=\frac{2[r+(N-1) k / 2] \sum_{n=0}^{N-1} 10^{n}}{N(r+(N-1) k / 2)}=(2 / N) \sum_{n=0}^{N-1} 10^{n}
$$

This shows that the quotient, depends only on N, which concludes the proof.

