The Francis $1-2-3$ Theorem. Start with a positive integer r and produce an N-digit number J such that, beginning with r in the "ones" position, the other digits in J increase in increments of 1 as they fill higher orders of "tens" positions in J (e.g. $r=3, N=5$, then $J=76,543$).

Find the sum of J and its reverse, \hat{J} (e.g. $J=123$, then $\hat{J}=321$). Now also find the sum of the digits in $J($ or $\hat{J})$.

Statement: The quotient of these two sums does not vary under any choice for r, and depends only on the choice for N

Proof. The integers J and \hat{J} can be described in a more general form as series:

$$
\begin{aligned}
& J=\sum_{n=0}^{N-1}[((N-1)+r)-n] 10^{n} \\
& \hat{J}=\sum_{n=0}^{N-1}(r+n) 10^{n}
\end{aligned}
$$

and the sum of the digits in J (or \hat{J}) can also be put in series form:

$$
\sum_{n=0}^{N-1}(r+n)=\sum_{n=0}^{N-1} r+\sum_{n=0}^{N-1} n=N r+\frac{(N-1)(N)}{2}
$$

The sum $J+\hat{J}$ can be written

$$
\begin{aligned}
J+\hat{J} & =\sum_{n=0}^{N-1}[(N-1)+r+(r+n)-n] 10^{n}=\sum_{n=0}^{N-1}[(N-1)+2 r] 10^{n} \\
& =[(N-1)+2 r] \sum_{n=0}^{N-1} 10^{n}
\end{aligned}
$$

so the quotient of the two sums

$$
\frac{[(N-1)+2 r] \sum_{n=0}^{N-1} 10^{n}}{N r+[(N-1)(N) / 2]}=\frac{2[r+(N-1) / 2] \sum_{n=0}^{N-1} 10^{n}}{N(r+(N-1) / 2)}=(2 / N) \sum_{n=0}^{N-1} 10^{n}
$$

This shows that the quotient, depends only on N, which concludes the proof.

