Does the Deletion of the Ips1 Protein Impact Hyphal Tip Localization of ASH1 mRNA in Candida albicans?

Blythe Thompson, Class of 2026

The opportunistic fungal pathogen Candida albicans exists in both budding and filamentous hyphal forms, and the ability to switch between these two forms is crucial to its pathogenicity (Sudbery 2011). Hyphal formation, a type of polarized cell growth, results from the asymmetric localization of key proteins within the cell; one mechanism contributing to this asymmetric localization is the directional transport of mRNA to sites of protein translation at the hyphal tip (Elson et. al. 2009). The transport system underlying polarized growth in Saccharomyces cerevisiae (baker's yeast) is well-studied: RNA-binding proteins She3 and She2 facilitate the transport of mRNAs via the Myo4 myosin motor (Gonsalvez et. al. 2005). While C. albicans has a corresponding RNA-binding protein She3, the absence of She2 and Myo4 orthologs suggests that other proteins may be involved in the transport of mRNA to the hyphal tip (Elson et. al. 2009). One potential RNA-binding protein that may participate in She3mediated transport is Interacting Protein of She3 (Ips1), which co-purifies with She3 (Pholcharee 2018). While Ips1 has been shown to localize at the hyphal tip of C. albicans cells during the later stages of hyphal formation, the direct importance of Ips1 in mRNA transport remains unknown (Wang 2022). This project focused on the role of Ips1 in the transport of ASH1 mRNA, which is associated with the She3 transport system (Elson et. al. 2009). Specifically, we assessed whether the absence of Ips1 impacted ASH1 localization to the hyphal tip. Moreover, in an effort to understand whether Ips1 plays a broader role in mRNA transport, we evaluated the localization of RBT4, another mRNA associated with She3, in the absence of Ips1.

To first assess the localization of ASH1 mRNA, we used a technique called fluorescence in situ hybridization (FISH). This process involved growing C. albicans cells in an overnight culture, inducing hyphal formation, fixing the hyphae in place and removing their cell walls, and hybridizing the digested hyphae with fluorescent probes that bind specifically to ASH1 mRNA. We then visualized the localization of ASH1 mRNA, based on an accumulation of fluorescent signal, in cells using confocal microscopy and quantified the signal with FIJI ImageJ software. We compared the percent hyphal tip ASH1 localization for cells with a deleted IPS1 gene (ips $1\Delta/\Delta$) to cells with a deleted SHE3 gene (she3 Δ/Δ), cells with a deleted ASH1 gene (ash1 Δ/Δ), and non-modified (wild-type, or WT) cells. Our study of RBT4 mRNA required the initial design of fluorescent RBT4 probes, which we completed early in the summer. In the final two weeks of the internship, we modified the FISH procedure to optimize the ideal probe concentration for RBT4 mRNA and conducted a preliminary evaluation of RBT4 localization in ips $1\Delta/\Delta$, WT, she3 Δ/Δ , and rbt4 Δ/Δ strains.

In our examination of ASH1 transport, we observed 5% tip localization in the $ips1\Delta/\Delta$ strain compared to 3.2% tip localization in $she3\Delta/\Delta$ cells and 72% tip localization in the WT strain. Since She3 is required for proper mRNA transport in *C. albicans*, the correspondingly low percentage of $ips1\Delta/\Delta$ cells with tip localization may indicate that Ips1 is similarly important for ASH1 mRNA transport. We intend to repeat this experiment in an effort to replicate these preliminary findings. RBT4 probes appear to bind only to RBT4 mRNA at an optimal concentration of 0.25 μ M. Preliminary qualitative results indicate delocalized RBT4 signal throughout the hyphal cell in both the $ips1\Delta/\Delta$ and the $she3\Delta/\Delta$ strains, though a formal

quantification of the signal (and subsequent repetition of the protocol) are necessary to adequately describe these findings.

Faculty Mentor: Anne McBride

Funded by the IDeA Networks of Biomedical Research Excellence (INBRE) National Institutes of Health Award

References:

- 1. Elson, S. L., Noble, S. M., Solis, N. V., Filler, S. G., & Johnson, A. D. (2009). An RNA transport system in candida albicans regulates hyphal morphology and invasive growth. *PLOS Genetics*, *5*(9), e1000664. https://doi.org/10.1371/journal.pgen.1000664
- 2. Gonsalvez, G. B., Urbinati, C. R., & Long, R. M. (2005). RNA localization in yeast: Moving towards a mechanism. *Biology of the Cell*, 97(1), 75–86. https://doi.org/10.1042/BC20040066
- 3. Pholcharee, T. (2018). Exploring mechanisms of mRNA localization through the identification of RNA-binding protein complexes in the pathogenic fungus *Candida albicans*. (Bowdoin College).
- 4. Sudbery, P. E. (2011). Growth of Candida albicans hyphae. *Nature Reviews Microbiology*, 9(10), 737–748. https://doi.org/10.1038/nrmicro2636
- 5. Wang, Y.P. (2022). Localizing potential messenger mRNA transport protein Ips1 in *Candida albicans*. (Bowdoin College).