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Abstract  

Deep neural networks (DNNs) are a subset of machine learning, a field in which an architecture of 
computer algorithms can draw inferences from sets of data, “learn”, and furthermore make predictions. 
The most modern and powerful machine learning algorithms are driven by DNNs. Typically, a multi-layer 
architecture of interconnected neurons or nodes, DNNs can accurately classify and predict, based on 
features of given data. For this project, I spent my summer with the Sekeh Lab, a machine learning and 
artificial intelligence (AI) lab based at The University of Maine. This project was dedicated to learning 
concepts such as classification, model architecture, optimizers, accuracy, efficiency, compression, and 
pruning. A parallel focus was the utilization of programming skills to implement and create DNNs in 
python. The result is a formal set of classification experiments, a comparison of the accuracy of three 
different deep-learning models on the MNIST and CIFAR-10 datasets. 

 
Learning Objectives and Methodology 

The main type of problem focused on was supervised classification, a problem in which a model is 
trained on a set of predictor features with assigned class labels. The resulting trained model is then used 
to predict and assign class labels for values in which the predictor features are known, but the class 
labels are unknown or not given [1]. A basic instance of this type of problem can be simulated using the 
multi-layer perceptron (MLP) model, Iris flower dataset, and the Python package Scikit-learn. More 
complex color image datasets, however, often lead to a decrease in the accuracy of the neural network. 

Convolutional neural networks or CNNs work using multidimensional data and significantly outmatch 
MLPs at image classification tasks. Benchmark CNN architectures such as AlexNet, VGG-16, and ResNet-
50 have revolutionized the field of computer vision and artificial intelligence [3][4][5]. These types of 
models can be recreated and utilized using python packages such as Keras and TensorFlow, however, 
can be inefficient in comparison to smaller models. Large CNNs can have millions of trainable 
parameters resulting in computationally expensive models with high memory requirements. Such size is 
limiting to large-scale deployment, mobile use, and many other applications of deep CNNs [6]. 

The answer to oversized models is Compression, a broad term to describe the slimming or size 
reduction of neural networks. This is especially pertinent today as models get increasingly accurate, but 
increasingly complex, large, and incompatible with many systems. Pruning is one type of compression 
technique that involves removing some of the learned weights from a particular model, reducing its size 
and expense. Many approaches to pruning can be taken, each trying to preserve the accuracy of the 
network while reducing its size as much as possible [7]. Novel pruning methods can make a drastic and 
immediate impact and are the ongoing focus of a project started during the summer with a fellow Sekeh 
Lab member. 

 
Experiment Objectives and Methodology 
The main objective of the classification experiment was to create a formal comparison of basic and 
complex deep learning models on datasets of differing complexity. Additionally, the model development 



process and testing layout can serve as a baseline for future pruning experiments. The experiment 
utilizes three basic deep learning models, a small multi-layer perceptron (MLP) model, a 2D 
convolutional neural network (CNN), and a transfer learning model. All the models were coded in 
python using Keras and TensorFlow with assistance from NumPy for data preprocessing.  

The MLP architecture implements a dense layer of size 128 with a rectified linear unit (ReLU) 
activation function and a second dense output layer of size 10 with a SoftMax activation. The model 
uses categorical cross entropy as a loss function and Adam as an optimizer. The CNN architecture 
implements three 2D convolutional layers each with ReLU activation, two 2x2 max-pooling layers, a 
dense layer of size 128 with ReLU activation, a 25% dropout rate layer, and a dense output layer of size 
10 with a SoftMax activation. It utilizes categorical cross-entropy loss and RMSprop activation. The 
transfer learning model implemented the VGG-16 architecture with pre-trained weights from ImageNet, 
while having added trainable layers on top. The added trainable architecture implemented dense layers 
of size 256 and 128 with ReLU activation and a dense output layer of size 10 with a SoftMax activation. It 
utilizes categorical cross-entropy loss and RMSprop activation. 

Data used for this experiment was MNIST, a dataset of 60,000 greyscale images of handwritten digits, 
and CIFAR-10, a dataset of 60,000 color images of 10 different classes for training and testing [8][9]. 
Each model was trained for 10 epochs with an 80/10/10 ratio for training/validation/testing data. The 
Matplotlib and Tabulate packages were used to generate the figures for visual aid and comparison. 

While no large-scale network compression was done via pruning, future implementations will attempt 
to tackle this problem. 

 
Results Obtained  

As seen in figure 1, all models performed relatively well at classifying the MNIST dataset. The 
testing data shown in figure 3 exhibit greater than 95% accuracy for all models. Notably, the transfer 
learning model was the worst performer on MNIST. In comparison, model accuracy on the CIFAR-10 
dataset shows a drop in the performance of all models. The MLP was the worst performer on this color 
image set with a performance of 41.5% accuracy (figure 4). As seen in figure 2, the transfer model 
initially performed better than the CNN, however over 10 training epochs the CNN improves much more 
to an accuracy of about 74.8%. 

 
Significance and Interpretation of Results  
 Although the transfer model worked well, it did not match or better the performance of the 
custom CNN. One issue may have been errors upscaling the 32x32 CIFAR-10 images to the input VGG 
size of 224x224. Given this, a fully customized CNN trained on one dataset, however, can be more 
accurate than a generalized one. While the MLP performed well initially on the greyscale handwritten 
digits, just one small step toward more complex image classification led to a tremendous reduction in 
accuracy. This exhibits the importance of larger models and CNNs in image classification and computer 
vision. The fields of hyperspectral imaging (HSI), satellite image classification, and remote sensing 
especially have vast potential to utilize CNNs [10]. To name a few, glacier mapping, remote sensing of 
sea ice, landslide detection and prediction, wildfire detection and prediction, flood risk and detection, 
remote sensing of water quality, agricultural crop mapping, and natural disaster mapping and response, 
can all be revolutionized using large DNNs. Evidently, network compression is extremely important. 
Developing accurate models, but also making them a usable and efficient size will aid in solving a vast 
array of problems. Future work will be focused on network pruning and applying this to remote sensing 
problems. 
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Fig 5. VGG-16 Architecture. Borrowed from Ferguson, Max & ak, Ronay & Lee, Yung-Tsun & Law, 
Kincho. (2017) [11] 
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