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Background:

The management of treatment-resistant disorders, such as depression and anxiety is one of the
most widely researched topics in neuropharmacology. A specific interest has recently been on
ketamine, a non-competitive NMDA receptor antagonist, which produces a swift therapeutic response
with long term effects (lasting up to 7 days) after a single administration (Gass et al. 2019; Murrough
et al. 2013; Yang et al. 2016).

However, the exact mechanism of ketamine’s antidepressant effects remains unknown.
Furthermore, due to standard poor translational preclinical animal models, the specific Wistar Kyoto
rats are used (WKY; Will et al. 2003). This is due to WKY rats being selectively bred to exhibit
depressive and anxiety-like symptoms comparable to patients (McAuley et al. 2009). Lastly, only
female subjects were used in this project, as they are underrepresented and due to evidence suggesting
that estrogen’s interactions with ketamine enhances its effectiveness even at lower doses. (Lehmann et
al. 1999; Wright et al. 2016)

Hence, this projects utilizes the WKY strain as a model to measure the animals’ behavior in
an acoustic startle paradigm, assessing the degree of response to a loud unexpected stimulus - as they
show maladaptive startle responses, synonymous to human patients with depression (McAuley et al.
2009; Vaidyanathan et al. 2013). We hypothesize that ketamine treatment will normalize this
maladaptive behavior both immediately (24 hours after) and longer term (7 days after), and will
correlate with the degree of oxidation in the targeted brain areas (Lemeshova 2024; Réus et al. 2015).
Lastly, we also hypothesize that ketamine’s different efficacies will depend on the phase of the
hormonal estrus cycle on the day of administration (Wright et al. 2016).

Methodology, Experimental Procedure, and Timelines

Animals: 44 WKY experimental rats and 12 Wistar control rats were 21 days old upon arrival.
After handling and acclimation, at the age of 47 days (the start of their young adult phase), the WKY
rats were divided into three experimental groups based on dosage and one control group.

Ketamine Treatment: A single ketamine dose of 5 mg/kg, 10 mg/kg, or 15 mg/kg was
intraperitoneally injected (Barentzen et al. 2024; Manduca et al. 2020; McDonnell et al. 2021). All
rats in the experimental group received the treatment at 50 days and were tested 24 hours and 7 days
later, with the control group receiving comparable doses of saline.

Behavioral and Molecular Experimentation: Before ketamine treatment, all 47-day-old rats
were acclimated in the SR-LAB Startle Response System to remove confounding effects of stress on
the expression of the relevant neural markers this study uses, including parvalbumin, after testing
(Palmer and Printz, 1999). Both immediate and delayed behavioral trials were conducted using
protocols previously used in the Honeycutt laboratory. Upon placement of the rats in the startle box,
every experimental session included 30 trials of subsequent 100-millisecond sound cues of 95-, 105-,
or 115-dB white noise in a randomized order with 30- to 45-second intervals in between. Average
startle response and maximum startle response were assessed as voltage, reported in millivolts.



After the final behavioral testing, brain collection and immunohistochemistry analysis were
conducted to examine activation patterns in the basolateral amygdala, hippocampus, and prefrontal
cortex, as these areas are associated with anxiety (Campbell and Mcqueen, 2004; Sharp, 2017; Hare
and Duman, 2020; Ghasemi et al., 2022). Staining was done for parvalbumin, a protein correlated to
neuronal inhibition and stress-related disorders, to measure ketamine’s impact on inhibitory behaviors
(Gildawie et al., 2020). Oxidative stress was also assessed through analysis of
8-hydroxy-2’-deoxyguanosine (8-OHdG), which is a well-established neural marker for oxidative
damage, investigating ketamine’s potential neuroprotective effects (Glirler et al., 2014; Xiao et al.,
2017).

Results

It was concluded that there was a decreasing trend in startle response with increasing
ketamine dose. Specifically, the 15 mg/kg ketamine dose significantly suppressed the startle response,
potentially indicating an anxiolytic or antidepressant effect at higher doses.
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