
Sensing Computers: The Impact of Increased Abstraction on the Programmer’s Experience

Micaela Simeone, Class of 2022

As computer programming becomes increasingly characterized by abstraction and automation, a
rift grows between the nature of programming in decades past and the nature of programming today.
Whereas, years ago, the discipline necessitated a detailed understanding of a computer’s internal
architecture, a programmer’s interaction with the machine today is mediated by multiple, often obscured
layers of abstraction. Consequently, the experience of programming and even the definition of
programming itself have shifted. However, historical texts suggest that the ideals of problem-solving,
analytical thinking, and creativity that shape the discipline have consistently characterized how
programming is taught and how programmers see themselves.

For my project, I traced these ideals alongside technological developments in computer science
before considering how analyzing the experiences of programmers across the years can reveal important
insights into the changing relationship between programmer and computer. Ultimately, centering the
programmer’s experience in a conversation about computer science’s evolution can prompt us to critically
reevaluate the status of the programmer at a time when computers themselves are absorbing the work of
programming. My research culminated in a 27-page paper that, essentially, examines the changing
experience of the programmer using historical and industry texts as well as archival materials exploring
the history of computing at one institution—Bowdoin College. My analysis also focuses on insights from
interviews with Bowdoin Computer Science faculty and students, as well as with two senior
programmers. In short, my paper highlights the implications of developments in programming for the
relationship between programmer and computer, ideals and realities that shape the discipline, and the
importance of emphasizing the programmer’s experience.

I separated my research into three phases: texts, archives, and interviews. I began by reading
historical works on the history of computing spanning the nineteenth century to the present day as well as
textbooks and memoirs by programming pioneers and experts. Next, I conducted archival research at the
Bowdoin College Dept. of Special Collections & Archives to acquire information about computing at
Bowdoin since the 1960s. In my third phase, I designed and carried out interviews with Bowdoin
Computer Science faculty and students to gather opinions about changes in computer science and the
programmer’s experience.

In my paper, using findings from my historical readings, I emphasize how, since its origins,
programming has been framed as a field granting limitless possibilities. Next, gleaning from readings,
archives, and interviews, I also examine how the computer is described as the programmer’s tool, show
how an increasing amount of programming work is being offloaded to the computer, and consider how
this shapes the possibilities that are open to programmers. I explore how programmers, educators, and
others describe programming, showing how programming is ultimately framed as a mode of thinking that
requires creative problem-solving skills. I then begin to consider how the ideals of programming have
played out over time, focusing on how technical evolutions have altered the programmer’s ability to
recognize, trace, and solve errors and fulfill their role as problem-solvers; I also use readings and
interviews to question how technical changes have impacted what it feels like to program. The final
section of my paper considers how my analysis fits into the reality of computing as an ever-evolving
discipline, and I conclude by framing my analysis in the context of AI and automation.

As computers absorb an increased amount of programming tasks, programmers will need to
carefully delineate the importance of their role. The extent to which they remain “in the loop” will depend
in part on creating new definitions for the title of “programmer” and on redefining the role of
programmers and their relationship to computers.

Faculty Mentor: Professor Crystal Hall

Funded by the Surdna Foundation Undergraduate Research Fellowship


