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Summary: Ketamine, a non-competitive NMDA receptor antagonist, has emerged as a novel antidepressant in the last
decade due to its swift therapeutic response, especially in patients with treatment-resistant disorders. Unlike the commonly
used medications such as serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), and
serotonin/norepinephrine reuptake inhibitors (SNRIs) among others, ketamine’s effects persist from one week to months
following a single dose (Murrough et al. 2013; Yang et al. 2015; Gass et al. 2019). While used solely as an anesthetic for
more than 50 years (Deka et al., 2022), ketamine has now piqued interest as an effective treatment for posttraumatic stress
disorder (PTSD; Dames et al., 2022), as well as the only known drug that reduces suicidal ideation and inhibits depressive-
like symptoms regardless of any comorbid psychiatric and personality disorders present (Ahmed et al. 2023).

The project utilized the Wistar-Kyoto rat strain known for its genetic profile that exhibits depressive and anxiety-
like symptoms comparable to those seen in human patients alongside a reduced response rate to antidepressant treatment
(Will et al. 2003; McAuley et al. 2009). Furthermore, as ketamine is known to interact with estrogen, our research has
focused solely on female subjects to remedy lack of evidence regarding the drug’s effects during the four stages of the
estrous cycle (Lehmann et al. 1999; Wright et al. 2016).

Our experimental paradigm included 40 female Wistar-Kyoto rats injected interperitoneally with ketamine doses of
5, 10, and 15 mg/kg or a comparable dose of saline for the control group. To test the effects on behavior, we have habituated
the subjects to the SR-LAB Startle Response System for three days before drug administration, then tested the animals 24
hours and seven days after the injection. The SR-LAB system included randomized acoustic pulses of 95, 105, and 115 dB,
with the Wistar-Kyotos’ degree of startle being recorded by the built-in sensors. After the second test, the rats’ brains were
collected to conduct immunohistochemistry analysis to look into activation patterns of the basal lateral amygdala,
hippocampus, and prefrontal cortex — brain regions responsible for anxiety and fear modulation (Gildawie et al. 2020). We
performed staining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and parvalbumin (PV), a marker of oxidative damage and
a Calcium-binding protein crucial in in anxious behaviors respectively, to further investigate ketamine’s potential
neuroprotective effects (Glirler et al. 2014; Xiao et al. 2017).

While we are yet to process the immunohistochemistry data, behavioral trials demonstrate a decreasing trend in
startle response with increasing ketamine dose. An example is provided in Figure 1, which displays a significantly
suppressed average startle response in rats administered the 15 mg/kg dose. Thus, we have demonstrated that ketamine
indeed does have anxiolytic effect on behavior in a genetic model of treatment-resistant anxiety and PTSD and will continue
to analyze the data pertaining to neurobiological markers during the 25-26 academic year.
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Figure 1. Effect of ketamine dosage on average startle response in Wistar-Kyoto rats. ** corresponds to p <0.001, * to p
< 0.05.
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