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In recent years, the scientific community has become increasingly alarmed by current and 
projected reports of rapid climate change. Global warming, rising sea levels, melting ice caps, and 
increased frequency of extreme weather events threaten ecosystems which we are reliant on both for 
resources and for the sustained biodiversity of the planet.1 In light of these growing concerns, scientists 
are needing to ask more questions about the resilience of these ecosystems to environmental 
disturbances. Among these questions are those which address how sustainable management techniques 
might be used to maintain the desired stable states of ecosystems.  

To simulate these scenarios and the ways that management techniques might influence them, we 
turn to mathematical modeling. In particular, we use flow-kick dynamical systems to model periodically 
managed ecosystems and quantify their resilience to environmental change and management strategies. 
Flow-kick systems consist of repeated periods of undisturbed, natural growth (flow), each followed by a 
discrete intervention (kick) (see Figure 1).2  

 

Flow-kick systems provide a mathematical framework for answering questions such as: How will 
this management strategy affect the long term stable state of the system? How resilient would the system 
be to disturbances in a chosen management strategy? Techniques for using flow-kick systems to answer 
these questions have been developed in one dimension.3 In higher dimensions, however, researchers are 



currently reliant on computational models and simulations. Though simulations are important and 
useful, they take time to build and are often computationally expensive.  

With the general goal to extend analytic understanding of flow-kick systems in higher 
dimensions,  I spent the summer deepening my understanding of previously developed techniques for 
analyzing the stability of flow-kick equilibria. In particular, I studied the variational equation which 
pieces together linear approximations of local behavior to determine the tendencies of the system nearby 
equilibrium solutions.4 This led me to think critically about situations in which viewing the variational 
equation as a series of linear approximations leads to incorrect intuition. In turn, I began to study what 
mathematical conditions allow for this intuitive process to work and which require us to seek more 
information (see Figure 2). This work culminated in proving a theorem about the classification of 
flow-kick equilibria which satisfy a certain set of conditions.  

 

This semester my work has focused on exploring those particular circumstances in which our 
classical approach to the variational equation may fail. The reason for this failing has to do with the 
distinction between transient and asymptotic behavior (see Figure 3). By thinking critically about this 
distinction and the quantitative indicator of it, reactivity,5 I was able to construct an example of when 



our intuitive hypothesis about the behavior of the variational equation is the reverse of its actual 
behavior. From this example, I started to think about how to analytically characterize the accumulation 
of transient behavior, and how to easily determine when this cumulative behavior can or cannot go 
against our intuition.  
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