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Network models are useful for representing real-life situations such as social networks
and adoption of certain devices or strategies. In this project we implemented a cascade model to
represent a network of individual nodes influencing each other, with each node carrying random
initial behavior and a threshold over which a change of behavior occurs. The specific cascade
model in this project is the linear threshold model, in which each node i is randomly assigned a
threshold between 0 and 1, and each edge coming into node i from its neighbors (nodes in S(i))
are randomly assigned a weight wji between 0 and 1, such that the sum of all incoming weights
to node i is less than or equal to 1. At each iteration, each node will take in the behaviors xj

of all its neighbors, and the node i will only adopt behavior 1 if
∑

j∈S(i) wjixj ≥ bi. In order
to better represent real-life situations with this model, we applied a shock to the cascade model
after it reached its first equilibrium (at which all nodes stop changing behavior) and then let it
converge, and this process is carried on repeatedly. By doing this, we aim to study the resilience of
the network against regular shocks, which in this case means the ability of the model to reach its
equilibrium under shocks. Thanks to Son D. Ngo and Mingo Sanchez’s previous work (both Class
of 2017), we already had the skeleton of a computer program that simulated a cascade model with
regular shocks applied to it. During the project, we looked at four topologies of network models:
star, random, barabasi-albert, watts-strogatz models.

To simulate real-life behaviors, the algorithm first randomly picks a shock value, and then
use a probability distribution related to the shock value to apply different actual effects on each
node (i.e., updating the threshold of each node) while keeping the new thresholds in the range. A
large part of the work we did this semester focused on finding the appropriate and computationally
simple probability distribution for the shock value and the actual shock effect on each node. To
achieve this goal, we tested on normal, uniform, and custom distributions from which shock effects
on the nodes are chosen, and we abandoned the use of normal and uniform distribution for updating
the thresholds. Instead, we decided to choose two shock values s1, s2 from a uniform distribution
from 0 to 1 and then define an intermediate value shock effect xi = (s1 − s2) · x for a node with
current threshold x, and then use a quadratic function to update the threshold x while making
it stay between 0 and 1; that is, x′ = x + 1/2 · xi · (1 − x2). This equation came from the
realization that quadratic functions mapping thresholds to the range 0 to 1 are able to make sure
that smaller thresholds are more susceptible to change than higher thresholds, in accordance to
real-life observations. After playing with the quadratic function, we found that this one worked
best.

Now that we have tested the validity of our current algorithm and probability distribu-
tions, next we are envisioning visualizing the change of thresholds and the dynamics of the whole
network, and applying shocks to not all nodes but a subset of them. We will also apply ordinary
differential equations onto the shocks to find out if there is a pattern of the resilience of the network
against different shocks.
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