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My project this summer was focused on characterizing Toll receptors in the cricket with the goal 
of understanding if they are involved in the compensatory plasticity of the nervous system. Neural 
plasticity is how the nervous system changes or regenerates itself after injury, and adult organisms have 
a difficult time recovering from central nervous system injuries (Chen and Zheng, 2014; Kerr et al., 2011). 
Learning more about how the central nervous system regenerates in adult organisms would provide 
incredible treatment opportunities for patients with devastating injuries like spinal cord injuries (Chen 
and Zheng, 2014; Dietz, 2006; von Bernhardi et al., 2017).  

The Mediterranean Field Cricket, Gryllus bimaculatus is a great model organism as it has a simple 
central nervous system and demonstrates compensatory plasticity after injury in the adult. The cricket is 
dependent on its hearing for mating and detecting predators, and when the axons from a cricket's ear are 
severed, disconnected dendrites cross the midline of the prothoracic ganglion (which they normally 
respect) and connect to dendritic partners from the intact ear (Figure 1). This compensates for the injured 
ear (Brodfuehrer and Hoy, 1988; Hoy et al., 1985; Schildberger et al., 1986). Thus, the Horch lab aims to 
understand the molecular characters that underlie the phenomenon of Compensatory Plasticity.  

 
 
 
Figure 1. Compensatory Plasticity in the 
cricket. (Adapted from Horch et al, 2009) 
 

  
 
 
 
 

The Horch lab has found that Toll receptors are possibly involved in compensatory plasticity since 
they are differentially regulated in crickets after injury. In other insects, Tolls function in the central 
nervous system similarly to neurotrophins, promoting neuronal survival (Anthoney et al., 2018; Li et al., 
2020; McIlroy et al., 2013; Wang, 2020).  

 With the goal of characterizing Tolls in the cricket, we examined how different Tolls were 
evolutionarily related and where they were expressed in the cricket. First, we constructed phylogenetic 
trees with Toll proteins sequences from fruit flies, crickets, and other similar insects to understand 
evolutionary relations of the Tolls. Afterwards, we conducted whole-mount in situ hybridization (ISH) to 
visualize cricket tissue to see where Toll proteins are expressed in the cricket.  
 For the phylogenetic trees, we found that Tolls 1, 6, 7, and 8 expressed in the cricket with 6 and 8 
expressed the most. In our ISH experiment, we looked at where Toll 7 was expressed and found that it 
was expressed in the neurogenic tip of the mushroom bodies in the cricket brain and the limb buds of 
cricket embryos. This result falls in line with studies in other insects that conclude that Toll 7 is responsible 
for neuronal survival in invertebrate embryos and brain development (Li et al., 2020). We did not find Toll 
7 expressed in the prothoracic ganglion (PG) with ISH, despite the fact that it was present in our PG 
transcriptome. It is possible that we need to improve our desheathing the PG in our dissections so that 
the probe can visualize the proteins that might be located there and were not visualized. It is also possible 
that Toll 7 expression is quite weak and not visible in the ISH. Regardless, we hope to continue 
characterizing different Tolls in the cricket in my honors project next year. 
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