
Faster Probabilistic Planning Through More Efficient
Stochastic Satisfiability Problem Encodings∗

Stephen M. Majercik and Andrew P. Rusczek
Department of Computer Science

Bowdoin College
Brunswick, ME 04011-8486

{smajerci,arusczek}@bowdoin.edu

Abstract
The propositional contingent planner ZANDER solves finite-
horizon, partially observable, probabilistic planning prob-
lems at state-of-the-art-speeds by converting the planning
problem to a stochastic satisfiability (SSAT) problem and
solving that problem instead (Majercik 2000). ZANDER ob-
tains these results using a relatively inefficient SSAT encod-
ing of the problem (a linear action encoding with classical
frame axioms). We describe and analyze three alternative
SSAT encodings for probabilistic planning problems: a lin-
ear action encoding with simple explanatory frame axioms,
a linear action encoding with complex explanatory frame ax-
ioms, and a parallel action encoding. Results on a suite of
test problems indicate that linear action encodings with sim-
ple explanatory frame axioms and parallel action encodings
show particular promise, improving ZANDER’s efficiency by
as much as three orders of magnitude.

Introduction
Majercik (2000) showed that a compactly represented arti-
ficial intelligence planning domain can be efficiently repre-
sented as a stochastic satisfiability problem (Littman, Majer-
cik, & Pitassi 2001), a type of Boolean satisfiability problem
in which some of the variables have probabilities attached
to them. This led to the development of ZANDER, an imple-
mented framework that extends the planning-as-satisfiability
paradigm to support contingent planning under uncertainty:
uncertain initial conditions, probabilistic action effects, and
uncertain state estimation (Majercik 2000).

There are different ways of encoding a probabilistic plan-
ning problem as an SSAT problem, however, and it is not
obvious which encoding is best for which problem. In this
paper, we begin to address the issue of producing maximally
efficient SSAT encodings for probabilistic planning prob-
lems. In the next section, we describe ZANDER. In the next
two sections, we describe four types of SSAT encodings of
planning problems, analyze their size and potential benefits
and drawbacks, and describe and analyze results using these
encodings on a suite of test problems. In the final section,
we discuss further work.

∗ Appears in the Proceedings of the Sixth International Con-
ference on Artificial Intelligence Planning and Scheduling, pages
163-172, AAAI Press, 2002.
Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ZANDER
In this section, we provide a brief overview of ZANDER.
Details are available elsewhere (Majercik 2000). ZANDER
works on partially observable probabilistic propositional
planning domains consisting of a finite set P of distinct state
propositions which may be True or False at any discrete
time t. A set P ′ ⊆ P of state propositions is declared to be
the set of observable propositions, and the members of O,
the set of observation propositions, are the members of P ′

tagged as observations of the corresponding state proposi-
tions. Thus, each observation proposition has, as its basis, a
state proposition that represents the actual state of the thing
being observed.

A state is an assignment of truth values to the state propo-
sitions. An initial state is specified by an assignment to the
state propositions. A probabilistic initial state is specified
by attaching probabilities to some or all of the variables rep-
resenting these propositions at time t = 0. Goal states are
specified by a partial assignment to the set of state proposi-
tions; any state that extends this partial assignment is a goal
state. Each of a finite set A of actions probabilistically trans-
forms a state at time t into a state at time t+1 and so induces
a probability distribution over the set of all states. The task
is to find an action for each time t as a function of the value
of observation propositions at times t′ < t that maximizes
the probability of reaching a goal state.

Previous versions of ZANDER used a propositional prob-
lem representation called the sequential-effects-tree repre-
sentation (ST), which is a syntactic variant of two-time-slice
Bayes nets (2TBNs) with conditional probability tables rep-
resented as trees (Majercik 2000). In the ST representation,
each action a is represented by an ordered list of decision
trees, the effect of a on each proposition represented as a
separate decision tree. This ordering means that the tree for
one proposition can refer to old and new values of previ-
ous propositions, thus allowing the effects of an action to be
correlated. The leaves of a decision tree describe how the
associated proposition changes as a function of the state and
action, perhaps probabilistically.

We currently represent problems using the Probabilistic
Planning Language (PPL). PPL is a high-level action lan-
guage that extends the action language AR (Giunchiglia,
Kartha, & Lifschitz 1997) to support probabilistic domains.
An ST representation can be easily translated into a PPL



representation (each path through each decision tree is re-
placed by a PPL statement) but PPL allows the user to
express planning problems in a more natural, flexible, and
compact format. More importantly, PPL gives the user the
opportunity (but does not require them) to easily express
state invariants, equivalences, irreversible conditions, and
action preconditions—information that can greatly decrease
the time required to find a solution.

ZANDER converts the PPL representation of the prob-
lem into a stochastic satisfiability (SSAT) problem. An
SSAT problem is a satisfiability (SAT) problem, assumed
to be in conjunctive normal form, with two types of
Boolean variables—termed choice variables and chance
variables (Majercik 2000)—and an ordering specified for
the variables. A choice variable is like a variable in a reg-
ular SAT problem; its truth value can be set by the plan-
ning agent. Each chance variable, on the other hand, has an
independent probability associated with it that specifies the
probability that that variable will be True.

Choice variables can be thought of as being existentially
quantified—we must pick a single, best value for such a
variable—while chance variables can be thought of as “ran-
domly” quantified—they introduce uncontrollable random
variation which, in general, makes it more difficult to find
a satisfying assignment. So, for example, an SSAT formula
with the ordering ∃v

R

w∃x

R

y∃z asks for values of v, x (as
a function of w), and z (as a function of w and y) that max-
imize the probability of satisfaction given the independent
probabilities associated with w and y. This dependence of
choice variable values on the earlier chance variable values
in the ordering allows ZANDER to map contingent planning
problems to stochastic satisfiability. Essentially, ZANDER
must find an assignment tree that specifies the optimal ac-
tion choice-variable assignment given all possible settings
of the observation variables (Majercik 2000).

The solver does a depth-first search of the tree of all pos-
sible truth assignments, constructing a solution subtree by
calculating, for each variable node, the probability of a sat-
isfying assignment given the partial assignment so far. For a
choice variable, this is the maximum probability of its chil-
dren. For a chance variable, the probability will be the prob-
ability weighted average of the success probabilities for that
node’s children. The solver finds the optimal plan by deter-
mining the subtree that yields the highest probability at the
root node.

ZANDER uses unit propagation (assigning a variable in a
unit clause—a clause with a single literal—its forced value)
and, to a much lesser extent, pure variable assignment (as-
signing the appropriate truth value to a choice variable that
appears only positively or only negatively) to prune subtrees
in this search. Also, although the order in which variables
are considered is constrained by the SSAT-imposed vari-
able ordering, where there is block of similar (choice or
chance) variables with no imposed ordering, ZANDER con-
siders those with the earliest time index first. This time-
ordered heuristic takes advantage of the temporal structure
of the clauses induced by the planning problem to produce
more unit clauses. ZANDER also uses dynamically calcu-
lated success probability thresholds to prune branches of the

tree. We are currently working on incorporating learning to
improve ZANDER’s performance.

SSAT Encodings
The SSAT encoding currently used by ZANDER—a linear
action encoding with classical frame axioms—and two of
the alternate encodings described below—a linear action en-
coding with simple explanatory frame axioms and a parallel-
action encoding—are similar to deterministic plan encod-
ings described by Kautz, McAllester, & Selman (1996). A
third encoding—a linear action encoding with complex ex-
planatory frame axioms—contains elements of these two al-
ternate encodings and arises due to the probabilistic actions
in our domains.

In all cases, variables are created to record the status of ac-
tions and propositions in a T -step plan by taking three cross
products: actions and times 1 through T , propositions and
times 0 through T , and random propositions and times 1
through T . Let A, P , O, and R be the sets of actions, state
propositions, observation propositions, and random proposi-
tions, respectively, and let A = |A|, P = |P |, O = |O|, and
R = |R|. Let V be the set of variables in the CNF formula.
Then:

|V | = (A+ P +O +R)T + P (1)

The variables generated by all but the random propositions
are choice variables. Those generated by the random propo-
sitions are chance variables. Each variable indicates the sta-
tus of an action, proposition, observation, or random propo-
sition at a particular time. In the parallel-action encoding,
two additional actions are produced for each proposition
p ∈ P at each time: a maintain-p-positively action and a
maintain-p-negatively action, which increases the number
of variables in this encoding by 2P .

Conceptually, we need clauses that enforce initial/goal
conditions and clauses that model actions and their effects.
The second group divides into two subgroups: clauses that
enforce (or not) a linear action encoding, and clauses that
model the impact of actions on propositions. Finally, in this
last subgroup, we need clauses that model the effects of ac-
tions both when they change the value of a proposition and
when they leave the value of a proposition unchanged (the
frame problem). In the following sections, we will describe
the clauses in each encoding that fulfill these functions.

Linear Action Encoding With
Classical Frame Axioms
Initial and Goal Conditions: Let IC+ ⊆ P (IC− ⊆ P ) be
the set of propositions that are True/False in the initial
state, and GC+ ⊆ P (GC− ⊆ P ) be the set of propositions
that are True/False in the goal state, where IC+ ∩ IC− = ∅
and GC+ ∩ GC− = ∅. This generates O(P) unit clauses:∧

p∈IC+

(p0) ∧
∧

p∈IC−
(p0) ∧

∧
p∈GC+

(pT ) ∧
∧

p∈GC−
(pT ) (2)

where superscripts indicate times.
Mutual Exclusivity of Actions: Special clauses marked

as “exactly-one-of” clauses specify that exactly one of the



literals in the clause be True and provide an efficient way
of encoding mutual exclusivity of actions. A straightfor-
ward propositional encoding of mutual exclusivity of n ac-
tions would require, for each time t, an action disjunction
clause stating that one of the actions must be True, and(
n
2

)
= O(n2) clauses stating that for each possible pair

of actions, one of the actions must be False. In subse-
quent solution efforts, the assignment of True to any ac-
tion would force the assignment of False to all the other
actions at that time step, but at a cost of discovering and
propagating the effect of the O(n) resulting unit clauses.
Depending on the implementation of the SSAT solver, the
number of mutual exclusivity clauses could also slow the
discovery of unit clauses. By tagging the action disjunction
clause as an exactly-one-of-clause, we reduce the total num-
ber of clauses, and the solver can make the appropriate truth
assignments to all actions in the clause as soon as one of
them is assigned True. This generates O(T ) exactly-one-
of clauses:

T∧
t=1

(∨
a∈A

at

)
(3)

Effects of Actions: Describing the effects of actions on
propositions generates one or two clauses for each PPL
action effect statement. If the statement is deterministic
(a probability of 0.0 or 1.0), the statement generates a sin-
gle clause modeling the action’s deterministic impact on the
proposition given the circumstances described by the state-
ment. For example, the following clause states that an error
condition is created if a painted part is painted again:

paint causes error withp 1.0 if painted (4)

The time indices are implicit; if the paint action is executed
at time t and painted is True at time t− 1, then error will
be True at time t. Each PPL statement of the type:

a causes p withp π if c1 and c2 and . . . and cm (5)

where a ∈ A, p ∈ P ∪ O, ci ∈ P, 1 ≤ i ≤ m, and π is 0.0
or 1.0 generates O(T ) clauses:

T∧
t=1

at ∨
∨

q∈Pa+p

qt−1 ∨
∨

q∈Pa−p

qt−1 ∨ pt

 (6)

if π = 0.0, where Pa+p ⊆ P is the set of cis that appear
positively in (5) and Pa−p ⊆ P is the set of cis that appear
negatively in that statement. If π = 1.0, the final literal in
each clause is pt rather than pt.

If statement (5) is probabilistic (0.0 < π < 1.0), the
statement generates two clauses modeling the action’s prob-
abilistic impact on the proposition given the circumstances
described by that statement. An example will clarify this
process. Suppose we have the following action effect state-
ment:

paint causes o-painted withp 0.4 if new painted (7)

Here, the modifier “new” changes the implicit time index of
painted to be the same as the time index of the action; in

other words, “new painted” refers to the value of painted
after the paint action has been executed.

Since the probability in this action effect statement is
strictly between 0.0 and 1.0, a chance variable cv1 associ-
ated with this probability will be generated along with two
clauses, one describing the impact of the action if the chance
variable is True and one describing its impact if the chance
variable is False. For example, this statement would gen-
erate the following two implications for time t = 1, where
time indices, −t, are added to the variables:

paint-1 ∧ painted-1 ∧ cv0.4-1 → o-painted-1 (8)
paint-1 ∧ painted-1 ∧ cv0.4-1 → o-painted-1 (9)

where cv0.4-1 is the chance variable associated with this ac-
tion effect, and the subscript indicates its probability. Negat-
ing the antecedent and replacing the implication with a dis-
junction produces two clauses:

paint-1 ∨ painted-1 ∨ cv0.4-1 ∨ o-painted-1 (10)

paint-1 ∨ painted-1 ∨ cv0.4-1 ∨ o-painted-1 (11)
Thus, each PPL statement of the type:

a causes p withp π if c1 and c2 and . . . and cm (12)
where a ∈ A, p ∈ P ∪ O, ci ∈ P , and 0.0 < π < 1.0
generates O(T ) clauses:

T∧
t=1

at ∨
∨

q∈Pa+p

qt−1 ∨
∨

q∈Pa−p

qt−1 ∨ cvt
π ∨ pt

 (13)

where Pa+p ⊆ P is the set of cis that appear positively in
(12) and Pa−p ⊆ P is the set of cis that appear negated in
that statement, and cvπ is the chance variable generated by
(12). The clauses in (13) model the effect of the action when
the chance variable is True. A similar set of clauses, but
with cvt

π instead of cvt
π model the effect when the chance

variable is False.
The set of propositions that determine the effect of an ac-

tion a,
⋃

p∈Pa
(Pa+p ∪ Pa−p), where Pa is the set of propo-

sitions affected by a, determine the arity C of that action.
These propositions in the action effects statements can be
either positive or negative, which leads to 2C possible com-
binations of C propositions. If every action affects every
proposition and every observation, both positively and neg-
atively, then the number of action effects clauses per time
step is O(A(O + P)2C), where C is the maximum arity
among all the actions in the domain. Since the number of
propositions is always greater than or equal to the number
of observations, this bound becomes O(AP2C). With T
time steps, an upper-bound on the number of actions effects
clauses is O(TAP2C).

Classical Frame Axioms: The fact that, for example, ac-
tion a1 has no impact on proposition p1 is modeled explicitly
by generating two action effect clauses describing this lack
of effect: one clause describing a1’s nonimpact when p1 is
positive and one describing a1’s nonimpact when p1 is neg-
ative. For every proposition p ∈ P ∪O that an action a ∈ A
has no effect on, O(T ) frame axiom clauses are generated:

T∧
t=1

(
at ∨ pt−1 ∨ pt

)
∧

T∧
t=1

(
at ∨ pt−1 ∨ pt

)
(14)



If one considers the case in which every proposition and
observation is unaffected by every action, then the upper-
bound on the number of classical frame axioms generated in
this encoding is O(TA(O + P)) = O(TAP).

Linear Action Encoding With
Simple Explanatory Frame Axioms
Clauses for initial and goal conditions, mutual exclusivity
of actions, and action effects remain the same as for linear
action encodings with classical frame axioms. But, since
actions typically affect only a relatively small number of
propositions, thus generating a large number of classical
frame axioms, we replace the classical frame axioms with
explanatory frame axioms. Explanatory frame axioms gen-
erate fewer clauses by encoding possible explanations for
changes in a proposition. For example, if the truth value of
proposition p8 changes from True to False, it must be
because some action capable of inducing that change was
executed; otherwise, the proposition remains unchanged:

pt−1
8 ∧ p8

t → at
4 ∨ at

5 ∨ at
7 (15)

where a4, a5, and a7 are the only actions at time t that can
cause the proposition p8 to change from True to False.
We call these “simple” explanatory frame axioms because
they do not make distinctions among the possible effects
of an action. Unlike deterministic, unconditioned actions,
it may be that, under certain circumstances, a5 leaves p8

unchanged; its presence in the above list merely states that
there is a set of circumstances under which a5 would change
p8 to p8. Thus, our simple explanatory frame axioms are
similar to the frame axioms proposed by Schubert (1990)
for the situation calculus in deterministic worlds, and like
his frame axioms, depend on the explanation closure as-
sumption: that the actions specified in the domain specify
all possible ways that propositions can change.

In general, let A+p− ⊆ A be the set of all actions that, un-
der some set of circumstances change proposition p’s value
from True to False and A+p− ⊆ A be the similar action
set for the converse change in p’s value. Then the following
clauses are generated:

T∧
t=1

∧
p∈P∪O

pt−1 ∨ pt ∨
∨

a∈A+p−

a

 ∧

T∧
t=1

∧
p∈P∪O

pt−1 ∨ pt ∨
∨

a∈A−p+

a

 (16)

Explanatory frame axioms must be generated for every
proposition at every time step, regardless of the number
of actions. Similar to the case of classical frame axioms,
clauses must be generated to specify changing state from
positive to negative as well as negative to positive. There-
fore a tight upper-bound on the number of explanatory frame
axioms generated is O(T (P +O)) = O(TP), a significant
improvement over the O(TAP) bound on classical frame
axioms.

Linear Action Encoding With
Complex Explanatory Frame Axioms
Clauses for initial and goal conditions, mutual exclusivity
of actions, and action effects remain the same as for linear
action encodings with classical or simple explanatory frame
axioms. The set of frame axioms is, however, different. A
simple explanatory frame axiom specifies that a set of ac-
tions could, but do not always, effect a particular change in
the truth value of a proposition. Complex explanatory frame
axioms seek to improve the encoding of frame axioms by
adding additional information that specifies under what cir-
cumstances these actions effect this change. These clauses
are of the form:

pt−1
8 ∧ p8

t → (at
4 ∧ pt−1

3 ∧ p7
t−1) ∨

(at
5 ∧ p8

t−1 ∧ pt−1
12 ∧ pt−1

15 ) ∨
(at

7 ∧ pt−1
6 ) (17)

which states that if the truth value of p8 changes from True
to False between times t− 1 and t, either 1) action a4 was
executed at time t and p3 was True and p7 was False
at time t − 1, OR action a5 was executed at time t and
p8 was False and p12 and p15 were True at time t − 1
OR action a7 was executed at time t and p6 was True at
time t − 1. These complex explanatory frame axioms are
very similar to the frame axioms proposed by Reiter (1991),
and, again, depend on the explanation closure assumption of
Schubert (1990).

In general, for a given proposition p there will be a set
of actions A+p− ⊆ A that can change p’s truth value from
True to False. For each of these actions a ∈ A+p− there
will be a set S of PPL statements of the form shown in
(12) describing the ways in which a can effect this change.
Let these statements be numbered from 1 to |S|. Let
P+sia+p− ⊆ P be the set of propositions in statement si

that must be True for action a to change p from True to
False, and let P−sia+p− ⊆ P be the set of propositions
in statement si that must be False for action a to change
p from True to False. Finally, let cvi

π, 1 ≤ i ≤ |S| be
the chance variable, if any, in statement si. Then complex
explanatory frame axioms of the following form will be gen-
erated:

T∧
t=1

∧
p∈P∪O

pt−1 ∨ pt ∨

∨
a∈A+p−

|S|∨
i=1

a ∧
∧

p∈P+sia+p−

p ∧
∧

p∈P−sia+p−

p ∧ cvi
π

 (18)

A similar set will be generated for actions that can change
p’s truth value from False to True.

The disjunction in the first line of (18) must be distributed
over the disjunction of conjunctions in the second line in
order to produce clauses, thus producing O(AC2C) clauses
for each proposition and time step (where C is the maximum
action arity) and O(TAPC2C) complex explanatory frame
axioms overall. In practice, however, subsumption usually
reduces the number of these clauses to a much more reason-
able level.



Parallel Action Encoding
The final encoding seeks to increase the efficiency of the
encoding by allowing parallel actions. Such encodings are
attractive in that, by allowing for the possibility of execut-
ing actions in parallel, the length of a plan with the same
probability of success can potentially be reduced, thereby
reducing the solution time. For example, PGRAPHPLAN and
TGRAPHPLAN (Blum & Langford 1999) allow parallel ac-
tions in probabilistic domains. PGRAPHPLAN and TGRAPH-
PLAN operate in the Markov decision process framework;
although actions have probabilistic effects, the initial state
and all subsequent states are completely known to the agent
(unlike ZANDER, which can handle partially observable do-
mains).

PGRAPHPLAN does forward dynamic programming us-
ing the planning graph as an aid in pruning search. ZAN-
DER essentially does the same thing by following the ac-
tion/observation variable ordering specified in the SSAT
problem. When ZANDER instantiates an action, the resulting
simplified formula implicitly describes the possible states
that the agent could reach after this action has been executed.
If the action is probabilistic, the resulting subformula (and
the chance variables in that subformula) encode a probabil-
ity distribution over the possible states that could result from
taking that action. And the algorithm is called recursively to
generate a new implicit probability distribution every time
an action is instantiated.

TGRAPHPLAN is an anytime algorithm that finds an opti-
mistic trajectory (the highest probability sequence of states
and actions leading from the initial state to a goal state), and
then recursively improves this initial trajectory by finding
unexpected states encountered on this trajectory (through
simulation) and addressing these by finding optimistic tra-
jectories from these states to a goal state. In this sense,
TGRAPHPLAN is more like APROPOS2 (Majercik 2002),
an anytime approximation algorithm based on ZANDER.

Clauses for initial and goal conditions remain the same.
This encoding, however, does not include the action ef-
fects clauses or frame axioms common to the first three
encodings. Instead, it works backward from the goal,
in the manner of TGRAPHPLAN to generate proposition-
production clauses enforcing the fact that propositions im-
ply the disjunction of all possible actions that could produce
that proposition, and clauses enforcing the fact that actions
imply their preconditions. This process is complicated by
the probabilistic nature of the domains, as we will explain in
more detail below.

Note that this encoding requires the addition of a set of
maintain actions, since one way of obtaining a proposition
with a particular truth value is by maintaining the value of
that proposition if it already has that value. Thus, the ac-
tion set of this encoding (and the number of variables) is
not strictly comparable to those of the previous encodings.
These maintain actions imply, as a precondition, the propo-
sition they maintain. These maintain-precondition clauses,
along with the proposition-production clauses, implicitly
provide the necessary frame axioms, since resolving a
maintain-precondition clause with a proposition-production
clause containing the maintain will produce a frame axiom.

For example, the maintain-precondition clause:

maintain-painted-positivelyt ∨ paintedt−1 (19)

and the proposition-production clause:

paintedt ∨ (paintt ∧ cvt
π) ∨maintain-painted-positivelyt (20)

resolve to produce:

paintedt ∨ paintedt−1 ∨ (paintt ∧ cvt
p) (21)

which readily translates to the explanatory frame axiom:

paintedt ∧ paintedt−1 → (paintt ∧ cvt
π) (22)

Finally, now that we can take more than one action at a
time we need clauses that specifically forbid the simultane-
ous execution of conflicting actions: Unlike TGRAPHPLAN,
however, which makes two actions exclusive if any pair of
outcomes interfere, the parallel action encoding we have de-
veloped for ZANDER makes two actions exclusive only un-
der the circumstances in which they produce conflicting out-
comes, as we will describe below.

Preconditions: Preconditions in the probabilistic setting
are not as clear-cut as in the deterministic case. We will
divide preconditions into two types. A hard precondition of
an action is a precondition without which the action has no
effect on any proposition under any circumstances. Let H+

a
be the set of hard preconditions for action a that must be
True and H−

a the set of hard preconditions for action a that
must be False. Then O(TAP) clauses are generated:

T∧
t=1

∧
a∈A

∧
h∈H+

a

(at ∨ ht−1) ∧

T∧
t=1

∧
a∈A

∧
h∈H−a

(at ∨ ht−1) (23)

Soft preconditions—action preconditions that are not hard
but whose value affects the impact of that action—are mod-
eled in the next set of clauses.

Proposition-Production Clauses: In these clauses, a
proposition p implies the conjunction of all those actions
(and the soft preconditions necessary for that action to pro-
duce p) that could have produced p.

This set of clauses is quite similar to the complex
explanatory axioms, but, instead of providing explanations
for changes in the status of a proposition, they provide expla-
nations for the current status of the proposition. This leads
to O(TAPC2C) clauses describing how propositions can
become True:

T∧
t=1

∧
p∈P∪O

pt−1 ∨

∨
a∈A+p−

|S|∨
i=1

a ∧
∧

p∈P+sia+p−

p ∧
∧

p∈P−sia+p−

p ∧ cvi
π

 (24)



and how propositions can become False (replace pt−1

with pt−1). An example may help clarify the type of clauses
produced and the use of the maintain action:

p8 → (a4 ∧ p3 ∧ p7 ∧ cv5) ∨
(a5 ∧ p8 ∧ p12 ∧ p15 ∧ cv11) ∨
(maintain-p8-negatively)

This set of clauses describes the possible ways that p8 can
be produced. Of course, one of the actions that can produce
a given proposition with a given truth value will always be
the maintain action for that proposition and truth value.

Conflicting Actions: The absence of action effects
clauses and the possibility of different outcomes of actions
depending on the circumstances also means that clauses
modeling action conflicts are somewhat more complex.
Since actions can have very different effects on a proposi-
tion depending on the circumstances, actions can be con-
flicting under some sets of circumstances but not others and
this must be incorporated into the action conflict clauses.
For example, paint and maintain-error-negatively are con-
flicting if the object is already painted, but not otherwise,
so we cannot have paint and painted at the same time
step as maintain-error-negatively; i.e. paint∧painted →
maintain− error − negatively. It would be incorrect to
specify that these two actions can never be taken together.
For each pair of actions a1 and a2, where a1 has an action
description statement si and a2 has an action description
statement sj such that the hard and soft preconditions do
not conflict, but the effects of si and sj conflict, a clause is
generated prohibiting the simultaneous execution of a1 and
a2 under circumstances that are a superset of the union of
the preconditions described in si and sj :

a1 ∧
∧

p∈P+sia1+p−

p ∧
∧

p∈P−sia1+p−

p ∧ cvi →

a2 ∧
∧

p∈P+sja2+p−

p ∧
∧

p∈P−sja2+p−

p ∧ cvi (25)

A loose upper bound on the number of such clauses pro-
duced is O(TP(AC2C)2).

Summary of Encodings
We will use the following notation to refer to the four types
of encodings described above:

• CLASS: linear action encoding with classical frame
axioms

• S-EXP: linear action encoding with simple explanatory
frame axioms

• C-EXP: linear action encoding with complex explanatory
frame axioms

• P-ACT: parallel action encoding

We briefly summarize the asymptotic bounds on the
number of clauses in each encoding:

Type Number Average
GO-n of of Clause

Encoding Variables Clauses Length
CLASS 51 165 3.15

GO-2 S-EXP 51 135 3.09
C-EXP 51 174 3.14
P-ACT 88 276 3.17
CLASS 71 290 3.14

GO-3 S-EXP 71 197 3.14
C-EXP 71 268 3.35
P-ACT 124 438 3.50
CLASS 91 449 3.12

GO-4 S-EXP 91 261 3.15
C-EXP 91 384 3.68
P-ACT 160 650 3.98
CLASS 111 642 3.10

GO-5 S-EXP 111 327 3.16
C-EXP 111 542 4.23
P-ACT 196 952 4.67

Table 1: Size of 5-step SSAT encodings of GO domains.

Type of SSAT Encoding Total Clauses
CLASS O(TAP2C)
S-EXP O(TAP2C)
C-EXP O(TAPC2C)
P-ACT O(TP(AC2C)2

In many cases, however, these bounds are fairly loose.
To give a better picture of the relative sizes of encodings,
we present encoding size information for 5-step plans for
four versions of the GENERAL-OPERATIONS (GO) domain
of increasing size in Table 1.

The S-EXP encoding appears to be the best encoding in
many respects (Figure 1). It results in the fewest total clauses
and grows at the slowest rate as the size of the GO domain
increases (Figure 1(a)), and has an average clause size sig-
nificantly shorter than the C-EXP and P-ACT encodings and
almost as short as the CLASS encoding (Figure 1(b)). (Note
that the decreasing average clause size of the CLASS en-
codings is due to the increasing number of short (3-literal)
classical frame axioms and is not indicative of an advan-
tage of the CLASS encodings.) Shorter clauses, of course,
are more likely to produce more unit clauses faster, which
speeds up the solution process. After the S-EXP encoding,
the C-EXP, CLASS, and P-ACT encodings, in that order, pro-
duce larger encodings that grow at faster rates. Furthermore,
while the average clause length for CLASS and S-EXP en-
codings remains roughly constant, the average clause length
for C-EXP and P-ACT encodings grows at a much faster rate
(Figure 1(b)).

Results and Analysis
The GO domain is a generic domain adapted from a problem
described by Onder (1998). In this domain, there are an arbi-
trary number of actions, each of which produces a single de-
sired effect with probability 0.5. The goal conditions require



100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6

T
O

T
A

L 
N

U
M

B
E

R
 O

F
 C

LA
U

S
E

S
 IN

 E
N

C
O

D
IN

G

�

SIZE OF GO DOMAIN (GO-X)

BASIC/CLASS
BASIC/S-ECP
BASIC/C-EXP
BASIC/P-ACT

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

1 2 3 4 5 6

A
V

E
R

A
G

E
 C

LA
U

S
E

 L
E

N
G

T
H

 IN
 E

N
C

O
D

IN
G

�

SIZE OF GO DOMAIN (GO-X)

BASIC/CLASS
BASIC/S-ECP
BASIC/C-EXP
BASIC/P-ACT

(a) Total number of clauses (b) Average clause length

Figure 1: Clause statistics for the GO domains highlight the larger size of the P-ACT encoding.

that all these effects be accomplished without falling into an
error condition, which results when the agent attempts to ex-
ecute an action whose effect has already been achieved. For
example, suppose we have three actions—paint, clean, and
noop—the first two of which can produce a desired effect—
painted and cleaned, respectively. There are three other
propositions—error, o-painted, and o-cleaned—the last
two of which are observations of the painted and cleaned
propositions. In the initial state, painted, cleaned, and er-
ror are all False. The goal is to end up with the object
painted and cleaned exactly once.

The GO domain has the advantage of scaling easily along
several parameters: the number of actions, the number of
propositions, the length of the plan. and the accuracy of
the observations. We created versions of the GO domain that
varied the number of actions from 2 to 5. From each of these
four domains, we created two domains: a BASIC version that
was essentially a translation of the corresponding ST repre-
sentation, and a DSPEC version that added domain-specific
knowledge. Each of these eight domains was translated
into four SSAT encodings using the four encoding types de-
scribed above: CLASS, S-EXP, C-EXP, and P-ACT. Finally,
the plan length for each of these 32 types of encodings was
varied from 1 to 10, producing 320 distinct encodings. (Al-
though the GO domains are a very general type of proba-
bilistic domain, we are currently running the same tests on
a wider variety of domains to verify the generality of the
results described below.)

Some idea of the relative size of the 32 encoding types
modulo the plan length can be obtained from Table 1. Ta-
ble 2(a) presents the running times of ZANDER for most
of the 320 encodings on an 866 MHz Dell Precision 620
with 256 Mbytes of RAM, running Linux 7.1.1 Table 2(b)

1ZANDER’s plan extraction mechanism is memory intensive;

presents the probability of success of the optimal plan for
both the linear-action encodings and the parallel-action en-
coding at each plan length.

Analysis of Linear Action Encodings
The S-EXP encoding is clearly the best of the linear action
encodings over the plan lengths tested (Table 2(a)). The
average clause length of these encodings is slightly higher
than the CLASS encodings (which always have the shortest
average clause length) in the GO-4 and GO-5 domains, (Fig-
ure 1(b)), but this is offset by a significant reduction in the
number of clauses (Figure 1(a)). An S-EXP encoding has
20-50% fewer clauses than a CLASS encoding (and the same
number of variables), and this is reflected in the shorter run
times for S-EXP encodings—typically 70-90% shorter than
those for CLASS encodings (e.g. Figure 2 for the GO-4 do-
main).

The number of clauses in a C-EXP encoding falls in be-
tween that of CLASS and S-EXP encodings (Figure 1(a)), but
the average clause size of a C-EXP encoding is larger than
both of these encodings and this disparity grows with the
size of the domain (Figure 1(b)), contributing to the rela-
tively poor performance of the C-EXP encodings in larger
domains. In addition, while the S-EXP encodings can be
generated in less time than the CLASS encodings, C-EXP en-
codings take longer to generate due to the increased number
and complexity of clauses.

Analysis of Parallel Action Encoding
The advantage of P-ACT encodings—the ability to take mul-
tiple actions at a time step and therefore construct and solve
encodings for shorter length plans—is apparent in the GO-3,

dashes in the table indicate that memory constraints prevented
ZANDER from finding a solution.



1

10

100

1000

1 2 3 4 5 6 7 8 9 10

C
P

U
 S

E
C

O
N

D
S

 T
O

 F
IN

D
 P

LA
N

�

LENGTH OF PLAN

GO-4/BASIC/CLASS
GO-4/BASIC/S-EXP
GO-4/BASIC/C-EXP
GO-4/BASIC/P-ACT

Figure 2: S-EXP and C-EXP encodings are the most efficient
linear-action encodings; times shown here for the BASIC GO-
4 domain.

GO-4, and GO-5 domains, and this advantage increases with
domain size. This is not surprising since, in any GO domain,
all actions that have not had their intended effect can be done
in parallel at any time step, and a larger number of actions
translates directly into a greater benefit from parallelism.
The increase in the number of variables and clauses—about
75% more variables and about 50-300% more clauses than
the other encodings—is more than offset by the reduction
in time steps necessary to achieve the same probability of
success. Even in the GO-2 domain, the 5-step parallel plan
produced by the P-ACT encoding succeeds with probability
0.938 and is found in 0.21 CPU second, compared to the 7-
step linear-action plan produced by the linear-action encod-
ings that succeeds with the same probability and is found in
0.11 to 0.26 CPU second. In the GO-5 domain, the 3-step
and 4-step parallel-action plans produced by the P-ACT en-
coding succeed with a much higher probability (0.513 and
0.724 respectively) than the best plan produced by a linear-
action encoding (0.363 for an 8-step plan), and the 3-step
parallel-action plan solution time is an order of magnitude
less than the best 8-step linear-action plan solution time (two
orders of magnitude better than the 8-step CLASS encoding).
The 2-step parallel-action plan succeeds with a probability
of 0.237, which is slightly better than the success probabil-
ity of the 7-step linear-action plan, and the 2-step parallel-
action plan solution time is three orders of magnitude less
than the 7-step linear-action plan solution times.

Adding Domain-Specific Knowledge
Not surprisingly, the addition of domain-specific knowledge
(DSPEC encodings) significantly speeds up the solution pro-
cess by making useful information explicit and, thus, more
readily available to the solver. Kautz & Selman (1998)

1

10

100

1000

1 2 3 4 5 6 7 8 9 10

C
P

U
 S

E
C

O
N

D
S

 T
O

 F
IN

D
 P

LA
N

�

LENGTH OF PLAN

GO-4/DSPEC/CLASS
GO-4/DSPEC/S-EXP
GO-4/DSPEC/C-EXP
GO-4/DSPEC/P-ACT

Figure 3: CLASS encodings become more competitive when
domain-specific knowledge is added.

have explored the possibility of exploiting domain knowl-
edge in deterministic-planning-as-satisfiability. In our test
problems, we added knowledge of irreversible conditions:
any fluent that is True (e.g. painted, cleaned, polished, or
error in the GO-3 domain) at time t is necessarily True
at time t + 1. This added knowledge is relatively mini-
mal, adding one clause per fluent per time step. Yet, the
addition of such clauses reduces the solution time by ap-
proximately 50-65% in some cases. The additional knowl-
edge does nothing to improve the running time of the S-
EXP or C-EXP encodings, since these encodings, by virtue
of their explanatory frame axioms, already include clauses
that model the persistence of positive propositions if there
is no action that can negate them. In fact, the addition of
these superfluous clauses frequently increases the running
time of the S-EXP and C-EXP encodings. This is apparent in
Figure 3 and Table 2(a), where, although the solution times
for the S-EXP and C-EXP encodings are slightly worse, the
CLASS encodings have become somewhat more competitive.

The benefit of adding domain-specific knowledge will
certainly vary across domains and, in any case, the ease of
adding such knowledge is critical. As mentioned earlier,
various types of domain-specific knowledge can easily be
added by the user in the form of PPL statements, but we
are currently developing a domain analyzer that will auto-
matically extract such information from the user’s domain
specification. In addition, the analyzer will also be able to
extract temporal constraints implicit in the domain specifi-
cation. Given the success of temporal-logic-based planners
in recent AIPS planning competitions, we expect that the
addition of such knowledge will improve performance con-
siderably.



BASIC or Type Run Time in CPU Seconds by Plan Length
GO-n DOMAIN of (average of 5 runs)

SPECIFIC Encoding 1 2 3 4 5 6 7 8 9 10
CLASS 0.0 0.0 0.01 0.01 0.02 0.07 0.26 0.99 3.76 14.10

BASIC S-EXP 0.0 0.0 0.0 0.01 0.01 0.03 0.11 0.39 1.31 4.44
C-EXP 0.0 0.0 0.0 0.01 0.02 0.04 0.13 0.42 1.44 4.84

GO-2 P-ACT 0.0 0.0 0.01 0.03 0.21 1.38 8.76 52.88 304.19 –
CLASS 0.0 0.0 0.0 0.0 0.01 0.04 0.14 0.47 1.61 5.41

DSPEC S-EXP 0.0 0.0 0.0 0.01 0.01 0.03 0.11 0.38 1.30 4.40
C-EXP 0.0 0.0 0.0 0.01 0.01 0.04 0.13 0.43 1.46 4.89
P-ACT 0.0 0.0 0.01 0.03 0.16 0.87 4.59 23.58 117.57 578.31
CLASS 0.0 0.0 0.0 0.01 0.08 0.47 2.81 16.17 90.04 490.03

BASIC S-EXP 0.0 0.0 0.0 0.01 0.03 0.15 0.82 4.09 20.01 95.17
C-EXP 0.0 0.0 0.0 0.01 0.04 0.19 0.95 4.70 22.60 107.37

GO-3 P-ACT 0.0 0.01 0.04 0.76 13.94 247.60 – – – –
CLASS 0.0 0.01 0.01 0.01 0.05 0.28 1.40 6.81 32.44 152.06

DSPEC S-EXP 0.0 0.0 0.01 0.01 0.04 0.16 0.85 4.24 20.54 98.45
C-EXP 0.0 0.0 0.01 0.01 0.04 0.19 0.97 4.84 23.25 110.21
P-ACT 0.0 0.0 0.04 0.68 9.01 105.83 – – – –
CLASS 0.0 0.0 0.01 0.04 0.25 2.17 17.85 139.20 – –

BASIC S-EXP 0.0 0.0 0.0 0.01 0.06 0.47 3.37 23.05 151.88 –
C-EXP 0.0 0.01 0.01 0.02 0.08 0.59 4.15 28.04 182.79 –

GO-4 P-ACT 0.0 0.01 0.38 18.11 850.37 – – – – –
CLASS 0.0 0.01 0.01 0.02 0.17 1.19 8.14 53.23 338.21 –

DSPEC S-EXP 0.0 0.0 0.0 0.01 0.07 0.50 3.53 24.09 158.77 –
C-EXP 0.0 0.0 0.01 0.01 0.08 0.62 4.33 29.00 188.41 –
P-ACT 0.0 0.01 0.39 15.50 445.35 – – – – –
CLASS 0.0 0.0 0.01 0.07 0.74 7.93 81.58 810.90 – –

BASIC S-EXP 0.0 0.0 0.01 0.01 0.12 1.12 10.11 88.32 – –
C-EXP 0.0 0.01 0.01 0.02 0.18 1.56 13.77 117.98 – –

GO-5 P-ACT 0.0 0.03 3.71 413.45 – – – – – –
CLASS 0.0 0.0 0.01 0.05 0.49 4.30 36.65 300.74 – –

DSPEC S-EXP 0.0 0.0 0.01 0.02 0.13 1.19 10.69 92.83 – –
C-EXP 0.0 0.01 0.01 0.02 0.18 1.60 14.29 122.09 – –
P-ACT 0.0 0.03 3.74 349.61 – – – – – –

(a) Execution times for the GO domains.

Linear Probability of Success of Optimal Plan
GO-n or Parallel by Plan Length

Actions 1 2 3 4 5 6 7 8 9 10
GO-2 LINEAR 0.0 0.250 0.500 0.688 0.813 0.891 0.938 0.965 0.981 0.989

PARALLEL 0.250 0.563 0.766 0.879 0.938 0.969 0.984 0.992 0.996 0.998
GO-3 LINEAR 0.0 0.0 0.125 0.313 0.500 0.656 0.773 0.855 0.910 0.945

PARALLEL 0.125 0.422 0.670 0.824 0.909 0.954 – – – –
GO-4 LINEAR 0.0 0.0 0.0 0.063 0.188 0.344 0.500 0.637 0.746 –

PARALLEL 0.063 0.316 0.586 0.772 0.881 – – – – –
GO-5 LINEAR 0.0 0.0 0.0 0.0 0.031 0.109 0.227 0.363 – –

PARALLEL 0.031 0.237 0.513 0.724 – – – – – –

(b) Success probabilities for the GO plans produced.

Table 2: Test results for the GO domains.



Further Work
Even more efficient SSAT encodings like the S-EXP encod-
ing contain clauses that are superfluous since they some-
times describe the effects of an action that cannot be taken
at a particular time step (or will have no impact if executed).
We are currently working on an approach that is analogous
to the GRAPHPLAN (Blum & Langford 1999) approach of
incrementally extending the depth of the planning graph in
the search for a successful plan. We propose to build the
SSAT encoding incrementally, attempting to find a satisfac-
tory plan in t time steps (starting with t = 1) and, if un-
successful, using the knowledge of what state we could be
in after time t to guide the construction of the SSAT encod-
ing for the next time step. This reachability analysis would
not only prevent superfluous clauses from being generated,
but would also make it unnecessary to pick a plan length for
the encoding, and would give the planner an anytime capa-
bility, producing a plan that succeeds with some probability
as soon as possible and increasing the plan’s probability of
success as time permits.

There are two other possibilities for alternate SSAT en-
codings that are more speculative. Most solution techniques
for partially observable Markov decision processes derive
their power from a value function—a mapping from states
to values that measures how “good” it is for an agent to
be in each possible state. Perhaps it would be possible to
develop a value-based encoding for ZANDER. If such an
encoding could be used to perform value approximation, it
would be particularly useful in the effort to scale up to much
larger domains. The second possibility borrows a concept
from belief networks to address the difficulty faced by an
agent who must decide which of a battery of possible ob-
servations is actually relevant to the current situation. D-
separation (Cowell 1999) is a graph-theoretic criterion for
reading independence statements from a belief net. Perhaps
there is some way to encode the notion of d-separation in
an SSAT plan encoding in order to allow the planner to de-
termine which observations are relevant under what circum-
stances.

References
Blum, A. L., and Langford, J. C. 1999. Probabilistic plan-
ning in the Graphplan framework. In Proceedings of the
Fifth European Conference on Planning.
Cowell, R. 1999. Introduction to inference for Bayesian
networks. In Jordan, M. I., ed., Learning in Graphical
Models. The MIT Press. 9–26.
Giunchiglia, E.; Kartha, G. N.; and Lifschitz, V. 1997.
Representing action: Indeterminacy and ramifications. Ar-
tificial Intelligence 95(2):409–438.
Kautz, H., and Selman, B. 1998. The role of domain-
specific knowledge in the planning as satisfiability frame-
work. In Proceedings of the Fourth International Confer-
ence on Artificial Intelligence Planning, 181–189. AAAI
Press.
Kautz, H.; McAllester, D.; and Selman, B. 1996. Encod-
ing plans in propositional logic. In Proceedings of the Fifth

International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR-96), 374–384.
Littman, M. L.; Majercik, S. M.; and Pitassi, T. 2001.
Stochastic Boolean satisfiability. Journal of Automated
Reasoning 27(3):251—296.
Majercik, S. M. 2000. Planning Under Uncertainty via
Stochastic Satisfiability. Ph.D. Dissertation, Department
of Computer Science, Duke University.
Majercik, S. M. 2002. APROPOS2: Approximate proba-
bilistic planning out of stochastic satisfiability.
Onder, N. 1998. Personal communication.
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed., Artificial In-
telligence and Mathematical Theory of Computation: Pa-
pers in Honor of John McCarthy. Academic Press.
Schubert, L. 1990. Monotonic solution of the frame prob-
lem in the situation calculus; an efficient method for worlds
with fully specified actions. In Kyburg, H.; Loui, R.; and
Carlson, G., eds., Knowledge Representation and Defeasi-
ble Reasoning. Dordrecht: Kluwer Academic Publishers.
23–67.


