Luminescent Metal–Metal-Bonded Exciplexes Involving Tetrakis(μ-diphosphito)diplatinate(II) and Thallium(I)

Sarah A. Clofelter, Tina M. Doede, Bridget A. Brennan, Jeffrey K. Nagle,* David P. Bender, Warren A. Turner, and Paul M. LaPunzina

Contribution from the Department of Chemistry, Bowdoin College, Brunswick, Maine 04011

Received March 10, 1994

Abstract: Spectroscopic and kinetic evidence is presented and used to identify and characterize three luminescent, metal–metal-bonded exciplexes. Two long-lived, strongly phosphorescent triplet exciplexes involving the lowest energy triplet excited state of Pt2(P2O7H2)34− (**Pt3, Vmax = 1.95 μm−1, Φmax = 0.5, τ = 10 μs) and Tf in aqueous solution at room temperature (**Pt3Ti, Vmax = 1.79 μm−1, Φmax = 0.5, τ = 10 μs; **Pt2Tl, Vmax = 1.70 μm−1, Φmax = 0.5, τ = 10 μs) and one weakly fluorescent singlet exciplex (Vmax = 2.32 μm−1, Φmax < 1 x 10−5) are formed as a result of direct Pt–Ti bonding. An inner-sphere mechanism for the formation of the two triplet exciplexes is proposed in a diffusional approach of the ionic reactants results in relativistically influenced Pt–Ti bonding and is accompanied by substantial desolvation effects. Free energies (~30 and ~20 kJ/mol), enthalpies (~19 and ~10 kJ/mol), and entropies (36 and 31 J/(mol K)) for the formation of **Pt3Ti and **Pt2Tl, respectively, are derived through a novel procedure and, along with the corresponding kinetic values, are consistent with the proposed mechanism. These three exciplexes are the only examples known which form as a result of metal–metal bonding between the reactants.

Introduction

Exciplex formation is a well-established phenomenon of electronically excited organic compounds.1 In contrast it is only now becoming recognized as an important reaction pathway for excited states of coordination compounds. Claims of outer-sphere exciplex formation involving coordinatively saturated compounds include those between Re(4,7-dimethyl-1,10-phenanthroline)(CO)3Cl and an aromatic amine.2 RuII-polypryidine compounds and AgI–3–5 Ir(phen)32+ or Ir(terpy)32+ and HgCl6.8 Coordinatively unsaturated compounds thought to form inner-sphere exciplexes include metalloporphyrins with electron acceptors.4 Ti with chloride ions,10 Cu(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)2 with Lewis bases,11 and Cu(CN)2Cl2– with halide ions.12 In addition some examples of luminescent eximer of square planar PtII compounds have also been reported,13-16 and the ease with which coordinatively unsaturated planar compounds undergo both eximer and exciplex formation has been discussed.15 Among metal–metal-bonded compounds only Pt2(P2O7H2)34− (abbreviated Pt217 with Ti, 18–20 and Cu4(μ-py)4 with Lewis bases21 have been reported to form exciplexes. The former example is especially noteworthy, not only in providing the first example of exciplex formation involving metal–metal bonding,22 but also in that the resulting luminescence is, as for the lowest triplet excited state of Pt2 (designated here as *Pt2),23 intense and long-lived. Unfortunately only preliminary results have been obtained to date, precluding a thorough understanding of the phenomenon.

Spectroscopic and kinetic evidence is presented here for the formation of two strongly phosphorescent tetraplillexiplexes resulting from diffusional encounters involving *P₃₂T₁ and T₁ in aqueous solution. As described below we attribute this to relativistically influenced Pt–Pt–T₁ and T₁–Pt–Pt–T₁ bonding interactions. To our knowledge these are the only known examples of exciplex formation resulting from metal–metal bonding between the reactants. A novel approach is used to derive thermodynamic and kinetic parameters characterizing the formation of these two species. Spectroscopic evidence is presented also for the existence of a weakly fluorescent singlet exciplex involving P₃₂ and T₁.

Experimental Section

Potassium Tetrakis(μ-diphosphito-P,P')diplatmate(H) Dihydrate. Samples were prepared according to established procedures26 and were stored in the dark under nitrogen to prevent decomposition.

Other Materials. Aldrich Gold Label 99.9+% thallium sulfate, Burdick and Jackson HPLC grade water, and Aldrich Gold Label 1,2-ethanediol were used as received.

Physical Measurements. An NSG Type 71 FL-H quartz luminescence cell designed for convenient degassing was used to purge aqueous solutions of oxygen with a stream of high-purity nitrogen gas passed through an Alltech Associates oxygen trap and connected to the cell via a Teflon tube inserted directly into its glass arm. The concentration of P₃₂ in aqueous solution was determined by absorbance measurements at 2.72 µm (ε = 3.45 × 10⁴ L mol⁻¹ cm⁻¹). Glassware was carefully cleaned with aqua regia or concentrated nitric acid followed by thorough rinsing with water to remove traces of metal ions and other impurities. All spectroscopic measurements were made within 3 h after preparation of the solutions to minimize problems due to sample decomposition.

Absorption spectra at room temperature (~293 K) were recorded with a Shimadzu UV-240 spectrophotometer (1 nm slit widths) interfaced to an IBM-PC computer and controlled with Shimadzu PC-265 Spectroscopy Interface software. Luminescence and luminescence excitation spectra at room temperature were recorded with a Spex 1850 0.22 m double monochromator luminescence spectrophotometer interfaced to an IBM-PC computer. A 450 W xenon lamp, slit widths of 1 or 2 nm, and an integration time of 1 s were used in all cases. Both luminescence and luminescence excitation spectra were corrected for instrument response variations.

Temperature dependent uncorrected luminescence spectra of an air-saturated 2:1 1,2-ethanediol/water solution of P₃₂ and T₁ were obtained with an experimental apparatus described previously.25 The solution was placed in a copper sample holder with a plastic wrap liner and sealed under vacuum with a silicon O-ring. A layer of Dow-Corning silicone high-vacuum grease between the holder and liner was used to maintain thermal contact. The sample holder was mounted on a copper plate inside a Janis Research 6RD dewar, and the temperature of the sample block was controlled from 1.7 to 300 K with a calibrated Lake Shore Cryotronics DT-500K silicon diode thermometer, resistance heater, and Lake Shore Cryotronics DTC 500-SP proportional temperature controller. The maximum error in the sample temperature was ±0.3%. The sample was excited with a mercury vapor lamp filtered by an Oriel 5181 UV band-pass filter (2.50–3.25 µm). The excitation light was transmitted to the sample through an American Optical UV-transmitting clad rod light guide with an effective upper transmission cutoff at approximately 2.86 µm, thus selecting the mercury spectral line at 2.74 µm. The luminescent light signal was transmitted from the dewar through an identical light guide, selected with a McKee Pederson MP-1018B scanning monochromator and detected with an RCA 931A photomultiplier tube connected to a Princeton Applied Research HR-8 lock-in detector.

Data Analysis. Spectral files were imported into the Spectra Calc (Galactic Industries) computer program, and the data were converted from wavelengths to wavenumbers for analysis. The observed spectra could be reproduced as the sums of individual Gaussian– Lorentzian bands located at different wavenumbers. They were resolved into their component bands (the additive Lorentzian contribution to each band was found to be less than 25% in all cases) by least-squares data fits with either the Data Fit 1.10 (part of the Square Tools 2.0 data package for Spectra Calc available from Spectrum Square Associates) or Curve Fit routines in Spectra Calc.

The three parameters characterizing the phosphorescence band position (wavenumber of maximum phosphorescence intensity) and shape (width and relative amounts of Lorentzian and Gaussian character) for *P₃₂ were easily determined in the absence of T₁, and established the reliability of the fitting procedure. The parameters for *P₃₂T₁ and *P₃₂T₁ were more difficult to determine owing to the presence of overlapping bands and were determined by an iterative procedure whereby the results of the fitting at T₁ concentrations yielding predominately one species were given the most weight. After an internally consistent set of parameters for each of the three species was established, some or all of these values could be fixed in the data analysis used to determine relative integrated intensities. This was particularly useful when a component band represented only a small fraction of the overall intensity. The individual band intensities were assumed to be proportional to the relative concentrations of the three species since their phosphorescence quantum yields were found to be identical within experimental uncertainty.

Results

The absorption spectrum of P₃₂ in aqueous solution at room temperature is only slightly affected by the addition of up to 10⁻³ mol/L T₁ (from Tl₂SO₄), in accord with previous findings for Tl(NO₃)₂18 and TlBr.20 A small but noticeable shift of the spin-allowed 2.72 µm⁻¹ band of P₃₂ to lower wavenumber occurs at higher concentrations of T₁. A least-squares Gaussian–Lorentzian resolution of the observed spectra at these higher concentrations revealed the presence of a second band at 2.56 µm⁻¹. No evidence for the formation of a third band at still lower wavenumber was obtained, even at 10⁻¹ T₁ concentrations as high as 0.1 mol/L. The luminescence excitation spectra of *P₃₂ yielded similar results and no noticeable excitation band shifts were observed when monitoring the luminescence over the range from 1.70 to 1.95 µm⁻¹.

Figure 1 shows the effects of the luminescence spectrum of *P₃₂ at room temperature of adding up to 2.5 × 10⁻³ mol/L T₁ to deoxygenated aqueous solutions of 1.0 × 10⁻³ mol/L P₃₂ irradiated at 2.72 µm⁻¹.26 The 1.95 µm⁻¹ phosphorescence band of *P₃₂ is diminished in intensity, and is accompanied by the appearance of a lower wavenumber band. The observed spectra have, within experimental uncertainty, identical integrated intensities and were resolved by computer analysis into two Gaussian–Lorentzian component bands located at 1.95 and 1.79 µm⁻¹.

(23) We (Hinkle, R. J.; Doede, T. M.; Nagle, J. K., unpublished results) and others (Crosby, G., personal communication) have observed similar effects with Ag⁺. In that case there are much greater effects on the absorption spectrum of P₃₂ than for T₁, indicative of a substantially larger ground state interaction.

(26) Irradiation at 2.21 µm⁻¹ (the spin-forbidden absorption band maximum) yields similar, though much less sensitive, results.
Figure 1. Luminescence spectra at room temperature of deoxygenated aqueous solutions of 1.0×10^{-5} mol/L Pt_2 with (a) 0, (b) 4.5×10^{-6}, (c) 1.1×10^{-3}, and (d) 2.5×10^{-3} mol/L Ti^+.

Figure 2. Ratio of $1.79 \mu m^{-1}$ luminescence intensity ($I_{1.79}$) versus $1.95 \mu m^{-1}$ luminescence intensity ($I_{1.95}$) for deoxygenated aqueous solutions of 1.0×10^{-5} mol/L Pt_2 with varying amounts of Ti^+.

μm^{-1}. A plot of the ratio of the integrated intensities of these two bands versus Ti^+ concentration (approximated as its formal concentration) is shown in Figure 2. A linear relationship is revealed with a linear least-squares slope (assuming the y-intercept to pass through the origin) equal to $(1.17 \pm 0.02) \times 10^3$ L/mol. The width (full width at half-maximum) of the $1.79 \mu m^{-1}$ band was found to be $0.21 \pm 0.01 \mu m^{-1}$, slightly broader than the $0.18 \pm 0.01 \mu m^{-1}$ width of the $1.95 \mu m^{-1}$ band of Pt_2. An isoluminescent point is seen at $1.866 \pm 0.002 \mu m^{-1}$, virtually identical to the $1.867 \pm 0.002 \mu m^{-1}$ average of the wavenumbers of the maximum intensities of the two bands.

Figure 3 shows the effects on the luminescence spectrum of Pt_2 at room temperature (~ 293 K) of adding up to 1.2×10^{-2} mol/L Ti^+ to deoxygenated aqueous solutions of 1.0×10^{-5} mol/L Pt_2 irradiated at $2.72 \mu m^{-1}$. The $1.79 \mu m^{-1}$ band appears to shift to near $1.70 \mu m^{-1}$. Once again the observed spectra have, within experimental uncertainty, identical integrated intensities. Attempts to fit the observed spectra in this concentration range to a single Gaussian–Lorentzian band were unsuccessful, and a minimum of two bands were required to achieve satisfactory fits. The two component bands were located by this procedure at 1.79 and $1.70 \mu m^{-1}$. A plot of the ratio of the integrated intensities of these two bands versus Ti^+ concentration is shown in Figure 4. A linear relationship is revealed with a linear least-squares slope (assuming the y-intercept to pass through the origin) equal to $(2.52 \pm 0.03) \times 10^3$ L/mol. The widths (full width at half-maximum) of the two bands were both found to be $0.21 \pm 0.01 \mu m^{-1}$. This result, along with the $0.18 \pm 0.01 \mu m^{-1}$ width determined in the absence of Ti^+, demonstrates that the shapes of all three component bands are nearly the same. An isoluminescent point is seen at $1.742 \pm 0.005 \mu m^{-1}$, virtually identical to the $1.743 \pm 0.002 \mu m^{-1}$ average of the maximum intensities of the two bands.

Lifetime measurements of the phosphorescence as a function of Ti^+ concentration at room temperature, taken beginning 10 ns following laser pulse excitation, revealed monoeponential decays over 2 orders of magnitude. Lifetimes were found to be identical within experimental uncertainty ($9.2 \pm 1.0 \mu s$) up to Ti^+ concentrations of 0.05 mol/L, in accord with published results.28-29 Quantum yields were also found to be the same as for Pt_2 (0.55).17 This was established by the fact that the integrated intensities of the observed spectra at each of the concentrations shown in Figures 1 and 3 are the same within experimental uncertainty.

Figure 5 shows the effect of temperature on the uncorrected luminescence spectrum (excitation at $2.74 \mu m^{-1}$) of an air-saturated 2:1 1,2-ethanediol/water solution of 2×10^{-6} mol/L Pt_2 with 3×10^{-2} mol/L Ti^+ (from TINO3). As the temperature is lowered from 300 to 190 K to give a frozen solution, luminescence thermochromism is revealed as the yellow-orange luminescence in the $1.7-1.8 \mu m^{-1}$ region decreases in intensity while the green luminescence at $1.95 \mu m^{-1}$ reappears. At temperatures as low as 5 K, a small shoulder at $1.7-1.8 \mu m^{-1}$

(27) The minor amount of Lorentzian character in the nearly Gaussian bands was also found to be about the same for all three bands.
still remains, but otherwise the luminescence behavior of the solution is identical to that of *Pt2 without added TlI. The luminescence lifetime variation of this solution over the temperature range 1.7-300 K is also identical within experimental uncertainty to the phosphorescence lifetime behavior of *Pt2 without added TlI.

The 2.49 \(\mu \text{m} \) fluorescence of *Pt1 (not shown in Figures 1 and 3) intensity and band maximum resulting from excitation at 2.72 \(\mu \text{m} \) are virtually unaffected by TlI at concentrations as high as 0.05 mol/L. However, as shown in Figure 6a, excitation at 2.44 \(\mu \text{m} \) (the 2.72 \(\mu \text{m} \) band shows negligible absorbance here) of a solution containing 1.0 \(\times \) 10^{-5} mol/L Pt2 and 0.050 mol/L TlI results in the appearance of a new, weak (\(\Phi_{\text{em}} \approx 1 \times 10^{-5} \)) luminescence band at 2.32 \(\mu \text{m} \), presumably fluorescence. Excitation at 2.86 \(\mu \text{m} \) (the 2.56 \(\mu \text{m} \) band shows negligible absorbance here) is shown also (Figure 6b) and, as for excitation at 2.72 \(\mu \text{m} \), results only in the appearance of the 2.49 \(\mu \text{m} \) fluorescence band. In contrast,

Scheme 1

![Scheme 1](image)

Table 1. Summary of Spectroscopic Assignments for Aqueous Solutions of Pt2 with TlI(SO4)2

<table>
<thead>
<tr>
<th>species</th>
<th>absorption bands</th>
<th>luminescence bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt2, *Pt2</td>
<td></td>
<td>2.208 ± 0.016, 1.947 ± 0.002</td>
</tr>
<tr>
<td>Pt2, *Pt2Tl, *Pt2Tl</td>
<td></td>
<td>2.717 ± 0.008, 2.494 ± 0.013</td>
</tr>
<tr>
<td>Pt2Tl2, *Pt2Tl2</td>
<td></td>
<td>2.558 ± 0.018, 1.786 ± 0.004</td>
</tr>
</tbody>
</table>

* The two absorption bands given for Pt2 correspond to spin-forbidden (lower wavenumber) and spin-allowed (higher wavenumber) transitions in each case. The two luminescence bands given for *Pt2 and *Pt2Tl correspond to phosphorescence (lower wavenumber) and fluorescence (higher wavenumber).

Discussion

Mechanism. A mechanism which accounts for these observations is presented in Scheme 1 where \(I_{\text{abs}} \) represents the intensity of the light absorbed by Pt2 and \(\delta \) is the fraction of the ground state of Pt2 that does not interact with TlI to form the weakly bound Pt2Tl ion pair. Two luminescent triplet exciplexes, *Pt2Tl and *Pt2Tl2, are proposed to form with radiative decays designated \(hv \) and \(hv' \) and nonradiative decays \(\Delta' \) and \(\Delta'' \), respectively.

While preliminary reports of *Pt2Tl have appeared, the effects of forming *Pt2Tl at higher TlI concentrations were not taken into account in those studies and led to misinterpretations of some of the results. The singlet exciplex *Pt2Tl postulated to be responsible for the weak luminescence band at 2.32 \(\mu \text{m} \) (Figure 6a) has not been previously reported and represents the first documented example of a singlet exciplex of a metal-metal-bonded compound in solution. It is formed only upon excitation at the 2.56 \(\mu \text{m} \) band of Pt2Tl and not the 2.72 \(\mu \text{m} \) band of Pt2 (Figure 6b), presumably because the lifetime of the singlet excited state of *Pt2 (~24 ps) is too short to allow for diffusional formation of the singlet exciplex.

The spectroscopic assignments are summarized in Table 1. Two absorption band maxima are given for Pt2 which correspond to spin-forbidden (lower wavenumber band) and spin-allowed (higher wavenumber band) transitions. In addition two luminescence bands each for *Pt2 and *Pt2Tl are given which correspond to phosphorescence (lower wavenumber band) and fluorescence (higher wavenumber band). The values of the fluorescence Stokes shifts for *Pt2 (0.223 ± 0.015 \(\mu \text{m} \)) and *Pt2Tl (0.238 ± 0.022 \(\mu \text{m} \)) are the same within experimental uncertainty, and nearly the same as the phospho-
luminescence Stokes shift for *Pt_2 $(0.261 \pm 0.016 \text{ \mu m}^{-1})^{31}$. The results for *Pt_2 are consistent with previously reported values, and the close correspondence between the Stokes shifts for *Pt_2 and $\text{*Pt}_2\text{TI}$ lends support to the proposed assignments for the 2.56 \mu m^{-1} absorption of Pt_2TI and the 2.32 \mu m^{-1} luminescence of $\text{*Pt}_2\text{TI}$ as being due to spin-allowed processes.

Attempts to determine a value for the ground state equilibrium constant corresponding to the ion-pairing process $\text{Pt}_2 + \text{Tl}^+ \rightleftharpoons \text{Pt}_2\text{TI}$ were only partially successful owing to the small observed changes in the absorption spectrum, even at Tl^+ concentrations as high as 0.1 mol/L. A preliminary value of 6 \pm 4 L/mol (assuming equal molar absorption coefficients for Pt_2 and Pt_2TI) was derived.\(^{32}\)

The temperature dependence of the luminescence spectrum (Figure 5) and lifetime lends support to the proposal that diffusion encounters between *Pt_2 and Tl^+ (as opposed to static encounters resulting from ground state Pt_2TI ion-pairing) are largely responsible for the formation of $\text{*Pt}_2\text{TI}$ (the same remarks apply to the formation of $\text{*Pt}_2\text{Tl}_2$ from Pt_2TI and Tl^+). Additional evidence to support this argument comes from the observations that molecular oxygen, acids, and salts such as K_2SO_4 all diminish the effects of Tl^+ on the *Pt_2 phosphorescence, O_2 presumably by competitive quenching of *Pt_2\(^{37}\) and the latter two by ion-pairing effects which are known to interfere with the diffusional approach of oppositely charged ions. Furthermore, static quenching would be expected to cause the 2.49 \mu m^{-1} fluorescence to be affected to a similar extent, and this is not observed (Figure 6b).

Why should Tl^+ form exciplexes with *Pt_2 instead of becoming oxidized or reduced by excited state electron transfer quenching, or promoted to an electronically excited state by energy transfer quenching? The answer is found in the energetics of formation of aqueous Tl^+, Tl^0, and Tl^+, respectively, from Tl^+. The standard reduction potentials (vs NHE) for the redox couples Tl^+/Tl^0 and Tl^+/Tl^+ are known to be 2.22 V\(^{35}\) and -1.94 V\(^{36}\) respectively, both too large in magnitude to allow for efficient electron transfer.\(^{17}\) Likewise, the 0–0 energy for the formation of the s–p excited state of Tl^+ (>325 kJ/mol)\(^{10}\) is much too large to allow for efficient energy transfer quenching.

Kinetic Parameters. A steady state kinetic analysis based on the mechanism given in Scheme 1\(^{37}\) yields eqs 1–3 which account for the observed linear relationships between the

\(^{31}\) This is not surprising since it has been demonstrated that the Pt\(^2\) singlet and triplet $A_{2s}(\sigma^* \rightarrow \sigma)$ potential surfaces are virtually the same (Stiegman, A. E.; Rice, S. F.; Gray, H. B. Miskowski, V. M. Inorg. Chem. 1987, 26, 1112–1116).

\(^{32}\) For example, the absorption band at 2.72 \mu m^{-1} shifts only to 2.71 \mu m^{-1}, even in 0.01 mol/L Tl^+. This makes the quantitative resolution of the observed spectrum into its component bands centered at 2.72 and 2.56 \mu m^{-1} quite difficult.

\(^{33}\) The molar absorption coefficient for Pt_2TI at 2.56 \mu m^{-1} is likely to be greater than that for Pt_2 at 2.72 \mu m^{-1} in accord with observations for linear Rh\(^{2+}\) dimers (Balch, A. L. J. Am. Chem. Soc. 1976, 98, 8049–8054) and trimers (Balch, A. L.; Bossett, L. A.; Nagle, J. K.; Olmstead, M. M. J. Am. Chem. Soc. 1988, 110, 6732–6738). Therefore, the estimated value is possibly somewhat high.

\(^{38}\) The approximation leading from eq 1 to eq 2 that $k_7/k_8 \approx (k_8 - k_{9} + k_{10})/(k_8 + k_9 + k_{10})$ can be shown, under the conditions of Figure 2 and with values of the rate constants derived below, to be valid within 3% at even the highest Tl^+ concentration used.

\(^{39}\) Under the conditions of the experiments shown in Figures 1 and 2 the fraction of Pt_2 existing in the form Pt_2TI is estimated to be less than 1% (based on $k_2/k_{12} \approx 6 \text{ L/mol}$). Furthermore, since the amount of light absorbed by Pt_2TI (absorption maximum 2.56 \mu m^{-1}) at 2.72 \mu m^{-1} is small, the effects of the formation of Pt_2TI on the observed luminescence can be ignored.

\(^{40}\) Diffusion-limited rate constants for reactions between ions of opposite charge in aqueous solution are generally about $10^{13} \text{ mol}^{-1} \text{s}^{-1}$. (Conors, K. A. Chemical Kinetics: The Study of Reaction Rates in Solution; VCH: New York, 1990; pp 134–136. The lower estimates used here are based on experimental results for diffusion-controlled quenching of *Pt_2 by doubly and triply charged cations in aqueous solution which lie in the range (4–5) $\times 10^{11} \text{ mol}^{-1} \text{s}^{-1}$ for ionic strengths comparable to those used here (Peterson, J. R.; Kalyanasundaram, K. J. Phys. Chem. 1985, 89, 2486–2492). Since the diffusion-limited rate constant should be somewhat lower for the singly charged Tl^+ ion, a value of $3 \times 10^{14} \text{ mol}^{-1} \text{s}^{-1}$ for k_1 has been adopted. The value for k_2 should be somewhat smaller than that for k_1 due to the reduced ionic charge of $\text{*Pt}_2\text{Tl}_2$ (3) versus *Pt_2 (4) and for statistical reasons (one less available site for interaction). A decrease by a factor of 2 has been adopted in the present case to account only for the likely possibility that the interactions between *Pt_2 and Tl^+ occur at the axial sites of *Pt_2.

\(^{41}\) In Figure 1 the fraction of *Pt_2 existing in the form of $\text{*Pt}_2\text{TI}$ is estimated from the equilibrium constants derived below to be less than 5%, a result supported by the results of resolving the spectra into three components. In Figure 3 the amount of free *Pt_2 is similarly estimated to be less than 3% at all Tl^+ concentrations.
s$^{-1}$ as an upper limit to k_3, k_1 is calculated to be 1.92×10^5
L/mol, the range of values being $(1.17-3.05) \times 10^5$ L/mol (the
goed, it is assumed here that the differences between internal energies and enthalpies are negligible.

As shown in Table 2, the overlap occurs at 2.056
$\pm 0.003 \, \mu$m$^{-1}$ (246.0 ± 0.4 kJ/mol).

It is now possible to calculate ΔH_1 and ΔH_2 for the formation of
*Pt2Tl and *Pt2Tl, respectively. If it is assumed that the enthalpies of formation for the corresponding
ground state species *Pt2Tl and *Pt2Tl are negligible. This
assumption leads to values of $\Delta H_1 = -19.3 \pm 0.5$ kJ/mol and $\Delta H_2 = -10.3 \pm 0.5$ kJ/mol. The difference between these values is 9.0 ± 0.8 kJ/mol, identical within experimental
uncertainty to the difference between the corresponding free
energy values. This requires the entropies of formation for
*Pt2Tl and *Pt2Tl, calculated from the free energies and enthalpies to be $\Delta S_1 = 36 \pm 5 \, \text{J} \, \text{mol}^{-1} \, \text{K}^{-1}$ and $\Delta S_2 = 31 \pm 2 \, \text{J} \, \text{mol}^{-1} \, \text{K}^{-1}$, to also be nearly equal. This appears to be a reasonable
result given the proposed mechanism. A summary of the
thermodynamic quantities for the formation of the two exo-

The discrepancies between this value and that reported previously
is due to the more effective deoxygenation procedure used here as well as a
more reliable procedure for resolving the phosphorescence spectra into their component bands.

The dependence of the relationship between exciplex spectroscopic and
thermodynamic properties can be found: Stevens, B. Adv. Photochem. 1971,
8, 161–226. Beens, H.; Weller, A. In Organic Molecular Photophysics;
Birks, J. B., Ed.; Wiley: New York, 1975; Vol. 2, Chapter 4. See also refs
1 and 57. As usual, it is assumed here that the differences between internal energies and enthalpies are negligible.

For direct evidence of the utility of the uncertainty in determining
the wavelength of the overlap of the phosphorescence and phosphorescence
excitation spectra. It does not account for any systematic error
resulting from the assumptions behind this procedure. In any case, judging
from the results reported elsewhere, any such systematic error is expected
to be small (<0.001 μm$^{-1}$).

This is reasonable since the value of the ground state equilibrium constant for the formation of *Pt2Tl from Pt2 and Tl$^-2$ as estimated from absorbance data is somewhat less than 6 ± 4 L/mol, and the corresponding
entropy is probably small and positive.

<table>
<thead>
<tr>
<th>excited state</th>
<th>ΔG (kJ mol$^{-1}$)</th>
<th>ΔH (kJ mol$^{-1}$)</th>
<th>ΔS (J mol$^{-1}$ K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Pt2Tl</td>
<td>-30.1 ± 1.3</td>
<td>-19.3 ± 0.5</td>
<td>36 ± 5</td>
</tr>
<tr>
<td>*Pt2Tl$^-$</td>
<td>-19.5 ± 0.1</td>
<td>-10.3 ± 0.5</td>
<td>31 ± 2</td>
</tr>
</tbody>
</table>

* The uncertainties given are estimates of random errors only and do not include systematic contributions resulting from the approximations and assumptions used to derive these values (see text).

Qualitatively, the positive entropies are consistent with the temperature dependent spectra shown in Figure 5 in that an increase in temperature leads to an increase in the intensity of exciplex luminescence relative to that of Pt. The data shown in Figure 5 cannot provide reliable quantitative values for ΔH and ΔS however since, among other things, the solvent undergoes a phase transition in this region, the solution is air-saturated, and the spectra are uncorrected. Analysis of temperature dependent data of the type shown in Figures 1 and 3 should enable reliable thermodynamic parameters to be obtained.

The positive entropies obtained for what is presumably an associative process highlight the importance of obtaining reaction volumes for exciplexes when additional insight into the dynamics of their formation is needed. Thus, the negative reaction volume of $-11 \pm 1 \, \text{cm}^3 \, \text{mol}^{-1}$ determined by photoacoustic calorimetry (presumably for the formation of *Pt2Tl from *Pt2 and 2Tl$^-$) is, as expected, indicative of bond formation between the reactants. In contrast the positive entropy of $67 \pm 5 \, \text{J} \, \text{mol}^{-1} \, \text{K}^{-1}$ (the sum of the entropies of formation

(42) The uncertainties given for ΔS_1 and ΔS_2 are estimates of the random
errors only. The two key assumptions made in the derivation of the
ermodynamic quantities that k_2 is greater than or equal to 1.9×10^5
L/mol and that the ground state enthalpies for both Pt2Tl and Pt2Tl$^-$ are measurable may lead to systematic errors in the derived values.

(43) However, if k_2 is less than 1.9×10^5 L/mol s$^{-1}$ and if the enthalpies of formation for Pt2Tl and Pt2Tl$^-$ are less than 0, both effects would make the calculated entropies more positive than those given. Furthermore, a positive
entropy for the sum of ΔS_1 and ΔS_2, for Pt2Tl and Pt2Tl$^-$ is calculated from the free energies determined here and the enthalpy (presumably corresponding to the sum of ΔH_1 and ΔH_2) of $-56 \pm 21 \, \text{kJ} \, \text{mol}^{-1}$ derived from photoacoustic calorimetry measurements.

for \(^*\text{Pt}_2\text{Tl} \) and \(^*\text{Pt}_2\text{Tl}_2 \) determined here is generally attributed (in the absence of a consideration of desolvation energies) to ligand loss and represents an exception to the empirical observation that negative reaction volumes are accompanied by negative reaction entropies.\(^{19}\) It is unclear why in the present case desolvation effects appear to manifest themselves so clearly in entropy but not volume changes.

In trying to assess the strengths of the \(\text{Pt}—\text{Tl} \) bonds in \(^*\text{Pt}_2\text{Tl} \) and \(^*\text{Pt}_2\text{Tl}_2 \), the enthalpies of formation reported in Table 2 should be viewed only as approximations of the actual bond energies between \(\text{PtTl} \) and \(^*\text{Pt}_2 \). This is because the same desolvation effects which appear to influence the entropies will undoubtedly influence the enthalpies of these reactions as well. The absolute enthalpy of formation of aqueous \(\text{Ti}^\text{II} \) from gaseous \(\text{Ti}^\text{II} \) is known to be \(-329 \text{ kJ/mol}\).\(^{48,49}\) and provides an indication of the importance of such desolvation effects. In fact, the situation is further complicated by the fact that \(\text{Ti}^\text{II} \) may displace \(\text{K}^+ \) (the thermodynamics of hydration of the two ions are nearly identical)\(^{48,49}\) upon interacting at the axial sites of \(^*\text{Pt}_2 \).

Structural and Electronic Properties. An attempt has been made to estimate the \(\text{Pt}—\text{Tl} \) bond distance in \(^*\text{Pt}_2\text{Tl} \) by molecular mechanics calculations.\(^{19}\) It was based on the known \(\text{Pt—Pt} \) bond lengths for \(\text{Pt}_2 \) and \(^*\text{Pt}_2 \) of 2.92 and 2.71 Å, respectively,\(^{17}\) and an assumed \(\text{Pt—Pt} \) bond length in \(^*\text{Pt}_2\text{Tl} \) of 2.71 Å, along with the experimentally determined volume of formation of \(-11 \text{ cm}^3/\text{mol} \) for the interaction of \(^*\text{Pt}_2 \) with \(\text{Ti}^\text{II} \) ions.\(^{19}\) Since the predominant excited state species under the conditions of the photoacoustic calorimetry experiments was presumably \(^*\text{Pt}_2\text{Tl}_2 \), and not \(^*\text{Pt}_2\text{Tl} \) as assumed, the derived \(\text{Pt}—\text{Tl} \) bond length of 2.6 Å is therefore most likely too short, and a value in the range 2.7–3.0 Å would seem more realistic.

The ability of \(\text{Ti}^\text{II} \) to form inner-sphere exciplexes with \(^*\text{Pt}_2 \) can be understood in terms of the structural and electronic properties of \(^*\text{Pt}_2 \) and \(\text{Ti}^\text{II} \). \(^*\text{Pt}_2 \) possesses two axial coordination sites which, on sterically grounds alone,\(^{50}\) appear to be more susceptible to coordination by \(\text{Ti}^\text{II} \) than are the corresponding sites in \(^*\text{Pt}_2 \). But more importantly the electronic structure of \(^*\text{Pt}_2 \) favors axial interactions with \(\text{Ti}^\text{II} \) ions compared to \(\text{Pt}_2 \), for which the ground state species \(\text{Pt}_2\text{Tl} \) and \(^*\text{Pt}_2\text{Tl}_2 \) should experience only relatively weak van der Waals interactions due to filled \(5d_e \) (\(\text{Pt} \)) and \(6s \) (\(\text{Ti} \)) orbital mixing with empty \(6p_\sigma \) orbitals and where the resultant metal–metal bond orders are predicted to be 0.5.\(^{52}\) Light absorption by dianionic \(^*\text{Pt}_2 \) results in the promotion of an electron from a \(\sigma^* \) (\(5d_e \)) antibonding orbital to a bonding \(\sigma \) (\(6p_\sigma \)) orbital and a concomitant increase in the \(\text{Pt—Pt} \) bond order from 0 to 1.\(^{52}\) These half-filled \(\sigma^* \) (\(5d_e \)) and \(\sigma \) (\(6p_\sigma \)) frontier orbitals of \(^*\text{Pt}_2 \) lying along the axial sites of the molecule can interact with the nearly isoenergetic filled 6s and empty 6p orbital of \(\text{Ti}^\text{II} \) ions, respectively.

To the extent that these frontier orbitals are isolobal, the resultant relativistically influenced\(^{41}\) metal–metal bonding in \(^*\text{Pt}_2\text{Tl} \) can be interpreted analogously to that in the lowest triplet excited state of \(\text{Pt}_2\text{CN} \).\(^{51,53}\) and other species involving linear arrays of three such heavy metal ions. Any \(\text{Pt—Tl} \) bonding

\(^{50}\) The more extensive contraction of the \(\text{Pt} \) atom planes (0.52 ± 0.13 Å; Thie, D. J.; Livings, P.; Stern, E. A. Nature (London) 1993, 362, 40–43; 1993, 362, 565) surrounding the core atom to the contraction of the two Pt atoms (0.20 Å) in the lowest triplet excited state relative to the singlet ground state results in a greater exposure of the Pt atoms to incoming Ti ions in \(^*\text{Pt}_2 \) compared to \(^*\text{Pt}_2\text{Tl}_2 \).

tively unsaturated metal compounds in triplet excited states can undergo exciplex or eximer formation.9–22

Acknowledgment. Acknowledgement is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. We thank Bowdoin College for sabbatical leave support (J.K.N.), the Fulbright Foundation for a Fulbright Scholar award (J.K.N.), and Arnd Vogler and Hartmut Yersin for their kind hospitality during the preparation of this paper at the University of Regensburg. Funds from a DuPont College Science Grant were used to purchase the laser.