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Introduction

To be adaptive, the long-term memory system must support retrieval of previously
stored knowledge that has high utility given our current task and goals. In this fram-
ing, the problem of memory retrieval concerns balancing the recovery of useful
information on the one hand against the inherent costs associated with retrieval itself
(Anderson and Milson, 1989). Central to striking this balance is cognitive control
function (sometimes called executive function), or the ability to leverage abstract
goals and contextual representations in order to adaptively influence retrieval and
memory-based performance.

The prefrontal cortex (PFC) is necessary for cognitive control function, including
during the cognitive control of memory. Whereas damage to medial temporal lobe
(MTL) structures produces amnesia that catastrophically impairs the encoding of new
information and retrieval of recently encoded information (Scoville and Milner,
1957), damage to the PFC results in more subtle memory deficits (Moscovitch, 1992;
Stuss and Alexander, 2005). For example, PFC patients are impaired in contexts
that require retrieval of specific information (i.e., source memory tasks; Janowsky
et al., 1989; Swick, Senkfor, and Van Petten, 2006), reliance on retrieval strategies
(Moscovitch and Melo, 1997), overcoming interference (Moscovitch, 1982; Squire,
1982; Winocur, Kinsbourne, and Moscovitch, 1981), ordering information at retrieval
(Shimamura, Janowsky, and Squire, 1990), or retrieval with limited cue support (e.g.,
free recall; Janowsky, Shimamura, and Squire, 1989; Jetter et al., 1986; Stuss et al.
1994). Neuroimaging studies have similarly implicated PFC in relation to specific
manipulations of cognitive control at retrieval (Badre and Wagner, 2007; Fletcher and
Henson, 2001; Rugg and Wilding, 2000). Thus, PFC is a crucial component of the
system that supports cognitive control of memory.

In general, the mechanism of cognitive control can be described in terms of a pro-
cess of guided activation (Miller and Cohen, 2001), wherein contextual or  al
information is maintained in working memory and thereby has the oppor nity to
provide a top-down influence on processing elsewhere. Nevertheless, a central debate

The Wiley Handbook on the Cognitive Neuroscience of Memory, First Edition.
Edited by Donna Rose Addis, Morgan Barense, and Audrey Duarte.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.





















138 Erika Nybus and David Badre

of memory. For example, in Snyder, Banich, and Munakata (2011), competition arose
n e distributed, semantic structure of long-term memory itself. By con-
studies of post-retrieval selection that show selective mid-vIPFC activation
tly or indirectly manipulated control over the decision criteria required to
sponse based on retrieved information. Indeed, repeating a concept pro-
tition suppression in anterior VIPFC, even when the decision that is made
concept changes (e.g., categorization based on size versus material type;
Race, Shanker, and Wagner, 2008). By contrast, repetition suppression in mid-vIPFC
requires both repetition of the  ncept and the decision (Race, Shanker, and Wagner,
2008). Consistent with peri- and post-retrieval processing, these distinct repetition
effects are separable in time, as assessed with electroencephalography (EEG) (Race,
Badre, and Wagner, 2010). Hence, as opposed to the presence or absence of compe-
tition, the critical factor governing the involvement of anterior vIPFC versus mid-
vIPFC may be the locus of competition, either in working memory or in long-term
memory, and the mechanisms that are deployed to resolve that competition. Future
studies will be required to separate competition from decision manipulations in order
to further understand the distinctions between anterior and mid-vIPFC during con-
trol of memory.

Separable Functional Frontal Networks

Importantly, subregions of the PFC do not function in isolation. Rather they are par-
ticipants in larger association networks that dynamically produce controlled behavior.
In recent years, functional connectivity analysis of fMRI data (fcMRI) has begun to
characterize the networks of regions that may functionally affiliate during particular
cognitive or motor tasks or as a conseque  : of spontaneous activity during rest (Fox
and Raichle, 20( s Chapter 1). During rest, fcMRI has taken advantage of
large samples and d: 1 order to pari  ate the cortex into different regional
groupings that correlate in the low-frequency components of their signal (Buckner,
2010). Among other factors, these low-frequency correlations may reflect the presence
of polysynaptic pathways connecting brain regions. Therefore, fcMRI, even at rest,
can provide evidence for the presence of functional brain networks. However, given
that other factors beyond fixed anatomy likely contribute to these correlations, one
should be cautious in assuming that the precise boundaries found at rest will remain
fixed across task manipulations. Nevertheless, these networks can provide a helpful
guide for generating hypotheses to be tested in task data. Moreover, it may be
informative to consider the degree to which the regional distinctions drawn in PFC
during control of memory — such as between controlled retrieval and post-retrieval
selection — might reflect differences across these broader functional networks.

Of particular relevance to the present discussion, fcMRI across different analysis
methods has consistently suggested that roughly ventral versus dorsal frontal regions
participate in separable functional networks (Dosenbach ez al., 2007; Vincent et al.,
2008; Yeo et al., 2011; Figure 7.3A). First, a dorsal frontoparietal network has been
repeatedly observed that includes regions of dorsolateral PFC (dIPFC) and posterior
parietal cortex, along the intraparietal sulcus. Second, vIPFC and orbital frontal cortex
consistently correlate with a network that includes medial and lateral temporal regions,
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