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Introduction 

To be adaptive, the long-term memory system must support retrieval of previously 
stored knowledge that has high utility given our current task and goals. In this fram­
ing, the problem of memory retrieval concerns balancing the recovery of useful 
information on the one hand against the inherent costs associated with retrieval itself 
(Anderson and Milson, 1989). Central to striking this balance is cognitive control 
function (sometimes called executive function), or the ability to leverage abstract 
goals and contextual representations in order to adaptively influence retrieval and 
memory-based performance. 

The prefrontal cortex (PFC) is necessary for cognitive control function, including 
during the cognitive control of memory. Whereas damage to medial temporal lobe 
( MTL) structures produces amnesia that catastrophically impairs the encoding of new 
information and retrieval of recently encoded information (Scoville and Milner, 
1957), damage to the PFC results in more subtle memory deficits (Moscovitch, 1992; 
Stuss and Alexander, 2005 ). For example, PFC patients are impaired in contexts 
that require retrieval of specific information (i.e., source memory tasks; Janowsky 
et al., 1989; Swick, Senkfor, and Van Petten, 2006), reliance on retrieval strategies 
(Moscovitch and Melo, 1997), overcoming interference (Moscovitch, 1982; Squire, 
1982; Winocur, Kinsbourne, and Moscovitch, 1981 ), ordering information at retrieval 
( Shimamura, J anowsky, and Squire, 1990 ), or retrieval with limited cue support (e.g., 
free recall; Janowsky, Shimamura, and Squire, 1989; Jetter et al., 1986; Stuss et al. 
1994). Neuroimaging studies have similarly implicated PFC in relation to specific 
manipulations of cognitive control at retrieval (Badre and Wagner, 2007; Fletcher and 
Henson, 2001; Rugg and Wilding, 2000). Thus, PFC is a crucial component of the 
system that supports cognitive control of memory. 

In general, the mechanism of cognitive control can be described in terms of a pro­
cess of guided activation (Miller and Cohen, 2001), wherein contextual or goal 
information is maintained in working memory and thereby has the opportunity to 
provide a top-down influence on processing elsewhere. Nevertheless, a central debate 
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in the study of cognitive control concerns whether cognitive control is a unitary 
process or involves a diverse set of functionally distinguishable control processes (e.g., 
Cooper, 2010) . 

Mirroring the debate about the componentiality of cognitive control, the PFC is 
likely not a functionally homogeneous structure supporting a unitary executive, but 
may contain distinct subsystems that support different forms of cognitive control. 
Neuroimaging studies have provided the primary evidence in favor of functional 
dissociations in PFC (Badre and Wagner, 2007; Simons and Spiers, 2003; Spaniol 
et al., 2009). Though debate still exists as to whether there are undifferentiated 
"multiple-demand zones" within the PFC - such as within the mid-dorsolateral 
PFC (Duncan, 2010) - it seems now widely accepted that functional distinctions 
likely exist, such as between ventral and dorsal lateral PFC (Petrides, 2002; Simons 
and Spiers, 2003), rostral versus caudal PFC (Buckner, 2003; Race, Shanker, and 
Wagner, 2008), left versus right lateral PFC (Nolde, Johnson, and Raye, 1998; 
Tulving et al., 1994), and lateral PFC versus medial and subcortical systems (Kuhl 
et al., 2008; Scimeca and Badre, 2012 ). Considerable controversy remains, how­
ever, regarding the validity of these distinctions and how to map them onto both 
individual experimental tasks and real-world behavior. 

The cognitive control of memory is also likely componential, emerging from a 
set of interacting component processes. For example, cognitive control has the oppor­
tunity to influence retrieval performance in several ways, ranging from processes that 
structure inputs to the memory system (e.g., cue elaboration) to output control that 
monitors the outcome of retrieval and selects which representations are permitted to 
influence decision and action (Benjamin, 2007; see also Chapter 5 ). These and other 
distinct memory control processes could likewise be supported by different brain sys­
tems. Though research has only begun to refine understanding of these mechanisms 
and their neural correlates, several distinctions have been proposed regarding 
differential control processing in the PFC (e.g., Badre and Wagner, 2007; Nyberg, 
Cabeza, and Tulving, 1996; Simons and Spiers, 2003; Spaniol et al., 2009; Tulving 
et al., 1994). 

Here we will focus on an example of functional specification within PFC related to 
cognitive control of memory retrieval. We will discuss the hypothetical specialization 
within ventrolateral PFC (vlPFC) between controlled retrieval and post-retrieval 
selection/monitoring operations. We will conclude by broadening the discussion of 
this distinction to consider the participation of these PFC subregions within distinct 
larger-scale functional networks. 

Venterolateral PFC and the Two-Process Model 

The left vlPFC refers to the broad region of lateral frontal cortex that is ventral to 
the inferior frontal sulcus and rostral to premotor cortex (Figure 7.1). Investigation 
of the function of this region has long provided the strongest evidence in favor of 
functional specialization within PFC, from the classic studies oflanguage impairment 
by Paul Broca (e.g., Broca, 1861) to early functional magnetic resonance imaging 
(fMRl) studies that distinguished subregions within left vlPFC related to the domain 
of verbal processing (e .g., the semantic versus phonological distinction; Poldrack 
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Figure 7.1 Anatomical divisions ofvlPFC. (a) Schematic representation of the cytoarchi ­
tectonic divisions of the lateral PFC (adapted from Petrides and Pandya, 2002) . Labels high­
light the anterior vlPFC (pars orbitalis (- Brodmann area [BA] 47)) and mid-vlPFC (pars 
triangularis (- BA 45 ) ). (b) Coronal slices from the Montreal Neurological Institute (MNI) 
canonical brain depict the anatomical boundaries that define mid-vlPFC and anterior vlPFC 
(reprinted with permission from Badre and Wagner, 2007). Labeled anatomical boundaries 
are (l ) inferior frontal sulcus, (2) insular sulcus, (3) horizontal ramus of the lateral fissure , 
and ( 4) orbital gyrus. 

et al., 1999). More recent work has focused on functional distinctions within this 
region as they relate to the cognitive control of memory. Specifically, recent work in 
our lab and in others has focused on a distinction between controlled retrieval, sup­
ported by anterior vlPFC, and post-retrieval selection, supported by mid-vlPFC 
(Badre and Wagner, 2007). Here, we will consider the evidence for and against this 
potential distinction within left vlPFC. 

To illustrate the distinction at the process level between controlled retrieval and 
selection, it is helpful to consider the analogy of searching for specific information on 
the Internet. For example, consider that you wish to find information about our lab . 
First, you need to "hit" our link from the broad, latent associative structure of the 
web. To do this, you devise a particular keyword to put in your web browser. Of 
course, some keywords will be more effective than others. For example, searching for 
"Badre lab" is likely to produce our lab's website as the top link. However, a less effec­
tive search, such as "science lab," would make it unlikely that you would find the link 
to our lab without a prohibitive cost in browsing time. Similar to this example, con­
trolled retrieval refers to strategically guiding the activation of task -relevant information 
from its latent state. In human memory, controlled retrieval can progress by focusing 
on or elaborating effective cues and thereby increasing the likelihood that task­
relevant information is activated from memory. From this perspective, one means of 
manipulating controlled retrieval experimentally is to reduce the strength of association 
between salient cues and target knowledge that would support automatic, cue-driven 
retrieval. In these cases, a top-down influence can aid in activating relevant knowledge 
from memory. 
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Importantly, however, it is very difficult to devise even a pair of keywords in a 
search engine that produce only a single web Link. (In fact, it is rare enough that there 
is a hobby called "Googlewhacking", whereby people try to achieve fame by finding 
pairs of keywords that produce only one hit through Google TM.) Thus, once we 
retrieve information into our browser, we "browse" or further select the links we want 
from this limited retrieved set. Though human memory is different in important ways 
from the Internet, it is a similarly vast, associative structure that uses a form of priority, 
such as previous co-occurrence, to rank the likelihood that a given representation will 
be retrieved given a particular cue (Anderson and Milson, 1989; Griffiths, Steyvers, 
and Firl, 2007). But, as on the Internet, this associative structure ensures that mul­
tiple representations will be retrieved given any cue, and that the highest-ranked rep­
resentation may not be the one that is needed, given current goals and decision 
criteria. Thus, it is adaptive if a controlled retrieval system is complemented by an 
output control system that maintains current decision criteria and selects relevant 
items from among competitors in working memory. The process of selecting from 
among retrieved information is termed post-retrieval selection. From this perspective, 
manipulations of response or decision criteria or varying the degree of competition 
among retrieved representations should affect post-retrieval selection. 

Multiple lines of evidence support the involvement of left vlPFC in the cognitive 
control of memory. Functional neuroimaging studies, including using fMRI and 
positron emission tomography (PET), have repeatedly demonstrated greater activation 
in vlPFC under conditions of effortful or goal-directed retrieval, such as controlling 
phonological and semantic representations (e.g., Gold et al., 2005 ), retrieving items 
with weak versus strong cue support (e.g., Badre et al., 2005 ), overcoming proactive 
interference (e.g., Oztekin and Badre, 2011 ), and active inhibition of memories (e.g., 
Anderson et al., 2004). Moreover, disruption of vlPFC due to neurological damage or 
disease decreased patients' ability to select among competing information (Metzler, 
2001; Thompson-Schill et al., 1998). Similarly, intraoperative stimulation (Klein et al., 
1997) or application of transcranial magnetic stimulation (Devlin, Matthews, and 
Rush worth, 2003; Gough, Nobre, and Devlin, 2005) disrupts performance when par­
ticipants are required to retrieve semantic information. Thus, in broad terms, vlPFC 
makes a necessary contribution to cognitive control of memory retrieval. However, 
an ongoing debate concerns the precise nature of vlPFC contributions to memory 
retrieval, and its functional organization in support of cognitive control. 

Drawing on a wide range of declarative memory paradigms, including tests of both 
semantic and episodic memory, as well as retrieval during action selection, such as task 
switching, Badre and Wagner (2007) proposed that distinct subdivisions of the rostral 
left vlPFC support distinct controlled retrieval and post-retrieval selection processes, 
associated with the inferior frontal gyrus (IFG) pars orbitalis (- Brodmann area [BA] 
47) and pars triangularis (- BA 45 ), respectively. These subregions were termed ante­
rior vlPFC and mid-vlPFC, respectively (Figure 7.1). We now briefly summarize the 
evidence that supports this distinction. 

The two-process model proposes that anterior vlPFC is activated when memory 
must be searched in a goal-directed manner (i.e., controlled retrieval; Badre and 
Wagner, 2007). Accordingly, when bottom-up cues are insufficient to elicit activation 
of target knowledge (i.e., automatic retrieval), demands on controlled retrieval 
processes increase. Control can aid retrieval in these contexts by elaborating cues or 
generating retrieval plans that structure the input to the retrieval system and so make 
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it more likely that relevant information will be retrieved. Consistent with this hypo­
thesis, anterior vlPFC is consistently activated during semantic retrieval tasks in which 
tl1e association between available cues and target knowledge is weak. For example, 
deciding that "candle" is semantically related to "flame" is easier and requires less con­
trolled retrieval than deciding that "candle" is related to "halo," because the association 
between candle and halo is weak relative to the association between candle and flame. 
Thus, experiments that manipulate associative strength, based either on pre-experi­
mental norms (Badre et at., 2005; Wagner et at., 2001) or on associations learned 
during the experimental session (Danker, Gunn, and Anderson, 2008), consistently 
show greater activation in anterior vlPFC under weak relative to strong associative 
strength conditions (Figure 7.2). In a way similar to high cue-target association 
strength, anterior vlPFC shows repetition suppression effects accompanying the 
increased semantic fluency that follows repetition of an item during a semantic memory 
task, even when the decision/response level effects are not repeated (Race, Shanker, 
and Wagner, 2008). 

According to the two-process model, mid-vlPFC is activated under conditions in 
which multiple items are retrieved from memory, but only a subset must be selected for 
further processing (i .e., post-retrieval selection; Badre and Wagner, 2007). As described 
above, automatic and controlled retrieval processes can result in the recovery of mul­
tiple representations. Thus, post-retrieval selection is needed to resolve competition 

(a) 
Associative strength Feature specificity 

weak-strong feature-related 

Mid-VLPFC 

(b) 

Figure 7.2 Results from manipulations of control during semantic retrieval provide evidence 
for the two-process model (reprinted with permission from Badre et al., 2005 ). (a) Contrasts 
ofweak relative to strong associative strength (associative strength) (p < 0.001) and decisions 
of item similarity based on features (e.g., color) relative to general semantic relatedness (feature 
specificity) (p < 0.001) . (b) Contrasts of associative strength (blue) and feature specificity (red) 
and their overlap (purple) are rendered on an inflated MNI canonical surface. Anterior vlPFC 
was sensitive to associative strength, whereas rnid-vlPFC was sensitive to both associative 
strength and feature specificity. 
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among the multiple retrieved representations, and to permit selected representations 
to guide decision and action. 

Support for mid-vlPFC and post-retrieval selection comes from several sources. 
First, mid-vlPFC shows greater activation when participants are asked to decide if two 
items (e.g., "apple" and "blood") are similar along a particular dimension, such 
as color, relative to deciding whether they are generally semantically related to 
one another regardless of dimension (feature specificity effect) (Badre et al. , 2005; 
Thompson-Schill et al., 1997) (Figure 7.2 ). This difference is thought to arise because 
making the decision along a particular task-relevant dimension requires focusing 
attention only on the retrieved details relevant to the decision and ignoring any other 
properties. Notably, anterior vlPFC does not show a difference between specific and 
general decision conditions (Badre et al., 2005 ). 

Proactive interference (PI) occurs when a prior learned association automatically 
elicits retrieval of information that competes with a current retrieval task (Anderson 
and Neely, 1996; Postman and Underwood, 1973 ). PI during short-term item 
recognition has consistently been associated with increased activation in mid-vlPFC 
(Badre and Wagner, 2005; Postle and Brush, 2004; Postle, Brush, and Nick, 2004). 
PI during short-term item recognition does not consistently produce activation 
increases in anterior vlPFC. However, as discussed below, other manipulations of 
PI have been associated with anterior vlPFC activation (Oztekin and Badre, 2011 ). 

During lexical decision, an unexpected target produces an interference effect above 
a neutral baseline. This interference effect is thought to be due to competition bet­
ween information retrieved during preparation for the target and the information that 
must be retrieved upon encountering the unexpected target. Competition of this type 
during lexical decision is associated with increased activation in mid-v!PFC. By con­
trast, anterior vlPFC shows priming effects consistent with the reduced retrieval 
demands (Gold et al., 2006) . Thus, across these examples, it appears that mid-vlPFC 
is critical under conditions of competition, presumably when there is a demand to 
select relevant information for further processing. By contrast, anterior vlPFC is not 
consistently activated under these circumstances. 

Importantly, attempts to directly dissociate anterior and mid-vlPFC are complicated 
by the fact that, akin to our Internet search analogy, any process of retrieval, be it 
controlled or automatic, holds the potential for competition. Thus, similar to anterior 
v!PFC, mid-vlPFC often shows increased activation under conditions requiring 
controlled retrieval (Badre et al., 2005; Wagner et al., 2001 ). And so, though single 
dissociations are sometimes observed (e.g., Danker, Gunn, and Anderson, 2008 ), dou­
ble dissociations are less common. However, if one pits competition against associative 
strength, it is possible to dissociate these regions. For example, when the number of 
retrieval cues is small (low overall retrieval) but associative strength is weak, there will 
be more demands on controlled retrieval than selection. By contrast, when the number 
of retrieval cues is large (high overall retrieval) but associative strength is high, this puts 
greater demands on selection than controlled retrieval. Consistent with this prediction, 
Badre et al. (2005) directly pitted number of available retrieval cues against associative 
strength and produced activation in anterior vlPFC but not mid-vlPFC. Thus, crossing 
the number of retrieval cues (i.e., increasing retrieval demands) with associative 
strength dissociates anterior from mid-vlPFC; and when this is taken together with the 
feature specificity effect described above, this produces a region-by-effect interaction, 
dissociating anterior and mid-vlPFC (Badre and Wagner, 2007). I 
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In summary, there is evidence both across and within studies for dissociable functions 
between anterior vlPFC and mid -vlPFC during cognitive control of memory, and these 
functions can be characterized as controlled retrieval and post-retrieval selection 
respectively. Nevertheless, there have been challenges to the two-process model. These 
have included formal theoretical arguments about whether two processes are required 
to achieve controlled retrieval and selection functions, as opposed to a single-process 
model that can support both functions (Danker, Gunn, and Anderson, 2008; 
Thompson-Schill and Botvinick, 2006). These models make clear that a single process 
could achieve these two functions. However, it would seem difficult for a single-process 
model to account for the empirical dissociation between these processes. There has 
also been some debate about the nature of the relationship between anterior vlPFC 
and controlled retrieval, and whether the manipulation of associative strength actually 
reflects the domain of information being retrieved, such as retrieval of abstract seman­
tics (Goldberg et al., 2007). Again, however, a strictly domain-based account appears 
too difficult to reconcile with the broader data supporting the controlled retrieval 
hypotl1esis, such as the observation of activation in anterior vlPFC when retrieving 
weak, arbitrary paired associations (Danker, Gunn, and Anderson, 2008). 

However, recent years have produced a potentially important challenge to the 
characterization of post-retrieval selection and its hypothesized relationship with com­
petition. First, Oztekin and Badre (2011) manipulated competition using a release­
from-PI paradigm in which competition was quantified for each trial using multi-voxel 
pattern analysis (MVPA; for more discussion of this method, see Chapters 1, 2, and 6). 
This procedure estimated the degree to which competing information was active during 
each memory decision, as reflected in the distributed WRI activation in lateral temporal 
cortex. Importantly, these MVPA indices are correlated with behavioral PI effects and 
forgetting in memory. However, activation in anterior vlPFC, rather than mid-vlPFC, 
varied with PI conditions. Moreover, a mediation analysis showed that activation in 
anterior vlPFC mediated the relationship between the MVPA indices and behavioral PI. 
In other words, anterior vlPFC was associated with competition resolution in this task. 

Second, Snyder, Banich, and Munakata (2011) used a latent semantic analysis 
procedure to independently characterize the cue-target association strength and 
competition of target words during a verb generation task. Latent semantic analysis 
evaluates large bodies of texts to build a multidimensional semantic space in which 
every word can be plotted in terms of its meaning and its similarity to other words' 
meanings. Any word can be coded both in terms of its distance from another word in 
the space (i.e., association strength) and its neighborhood density (i.e., competition: 
how many words cluster closely around that word in tl1e space) . Behaviorally, these 
two demands are separable, consistent with the concept of distinct controlled retrieval 
and selection processes (Snyder et al., 2010). However, regions of interest (ROis) 
in both anterior and mid-vlPFC showed additive activation changes to both manipu­
lations. Thus, again, a more formal definition of competition in memory found sensi­
tivity to this manipulation within anterior vlPFC, suggesting that this factor alone 
cannot account for tl1e previously observed dissociation. 

The Oztekin and Badre (2011) and Snyder, Banich, and Mw1akata (2011) results 
call into question the concept of competition during memory retrieval as being a clear 
distinguishing factor between anterior vlPFC and mid-vlPFC. Reconciling these 
findings with the empirical dissociations observed elsewhere will be important for 
understanding both the function of vlPFC and the factors that affect cognitive control 
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of memory. For example, in Snyder, Banich, and Munakata (2011), competition arose 
from within the distributed, semantic structure of long-term memory itself. By con­
trast, prior studies of post-retrieval selection that show selective mid-vlPFC activation 
have directly or indirectly manipulated control over the decision criteria required to 
make a response based on retrieved information. Indeed, repeating a concept pro­
duces repetition suppression in anterior vlPFC, even when the decision that is made 
about that concept changes (e.g., categorization based on size versus material type; 
Race, Shanker, and Wagner, 2008). By contrast, repetition suppression in mid-vlPFC 
requires both repetition of the concept and the decision (Race, Shanker, and Wagner, 
2008). Consistent with peri- and post-retrieval processing, these distinct repetition 
effects are separable in time, as assessed with electroencephalography (EEG) (Race, 
Badre, and Wagner, 2010). Hence, as opposed to the presence or absence of compe­
tition, the critical factor governing the involvement of anterior vlPFC versus mid­
vlPFC may be the locus of competition, either in working memory or in long-term 
memory, and the mechanisms that are deployed to resolve that competition. Future 
studies will be required to separate competition from decision manipulations in order 
to further understand the distinctions between anterior and mid-vlPFC during con­
trol of memory. 

Separable Functional Frontal Networks 

Importantly, subregions of the PFC do not function in isolation. Rather they are par­
ticipants in larger association networks that dynamically produce controlled behavior. 
In recent years, functional connectivity analysis of flv1RI data (fcMRI) has begun to 
characterize the networks of regions that may functionally affiliate during particular 
cognitive or motor tasks or as a consequence of spontaneous activity during rest (Fox 
and Raichle, 2007; see also Chapter 1). During rest, fcMRI has taken advantage of 
large samples and datasets in order to parcellate the cortex into different regional 
groupings that correlate in the low-frequency components of their signal (Buckner, 
2010). Among other factors, these low-frequency correlations may reflect the presence 
of polysynaptic pathways connecting brain regions. Therefore, fcMRI, even at rest, 
can provide evidence for the presence of functional brain networks. However, given 
that other factors beyond fixed anatomy likely contribute to these correlations, one 
should be cautious in assuming that the precise boundaries found at rest will remain 
fixed across task manipulations. Nevertheless, these networks can provide a helpful 
guide for generating hypotheses to be tested in task data. Moreover, it may be 
informative to consider the degree to which the regional distinctions drawn in PFC 
during control of memory - such as between controlled retrieval and post-retrieval 
selection - might reflect differences across these broader functional networks. 

Of particular relevance to the present discussion, fcMRI across different analysis 
methods has consistently suggested that roughly ventral versus dorsal frontal regions 
participate in separable functional networks (Dosenbach et al., 2007; Vincent et al., 
2008; Yeo et al., 2011; Figure 7.3A). First, a dorsal frontoparietal network has been 
repeatedly observed that includes regions of dorsolateral PFC ( dlPFC) and posterior 
parietal cortex, along the intraparietal sulcus. Second, vlPFC and orbital frontal cortex 
consistently correlate with a network that includes medial and lateral temporal regions, 

Memory 

including hippoc 
previously in the 
sion between the 
gyrus, which are 
dorsal portions o 
trol network, wh 
separately. And, 
mid-vlPFC diffe1 
sistently falls in t 

the dorsal netwo 
ween anterior vii 
functional netwo 

(a) 

(b) 

aTC 

Figure 7.3 Sche1 
trol networks. (a): 
mission from Yeo t 

and mid-vlPFC rq 
trative purposes an 
network (red), who 
ventral network (n 
controlled retrieval 
ventral controlled 
cortex (aTC), ante. 
dorsal frontopariet 
inferior parietal lo 
parahippocampal g 



mpetition arose 
¥ itself. By con­
lPFC activation 
:ria required to 
a concept pro­
on that is made 
s material type; 
n in mid-vlPFC 
er, and Wagner, 
:tinct repetition 
r (EEG) (Race, 
ence of compe-
8C versus mid­
x in long-term 
)etition. Future 
Llations in order 
8C during con-

ter they are par­
rolled behavior. 
[) has begurt to 
uring particular 
luring rest (Fox 
~n advantage of 
fferent regional 
ignal (Buckner, 
ect the presence 
U, even at rest, 
However, given 
xrelations, one 
rest will remain 
:ovide a helpful 
>Ver, it may be 
s drawn in PFC 
td post-retrieval 
etworks. 
ifferent analysis 
l frontal regions 
; Vincent et al., 
:twork has been 
~) and posterior 
al frontal cortex 
mporal regions, 

Memory Retrieval and the Functional OJE'anization of Frontal Cortex 139 

including hippocampus. This latter network includes many of the regions observed 
previously in the "default-mode" network (Raichle et al., 2001). However, the divi­
sion between these two networks is not clearly between the inferior and middle frontal 
gyrus, which are often labeled vlPFC and dlPFC respectively. Rather, the caudal and 
dorsal portions of the inferior frontal gyrus cluster with the dorsal frontoparietal con­
trol network, whereas the rostral and ventral portions of inferior frontal gyrus cluster 
separately. And, as can be observed in Figure 7.3a, prior definitions of anterior and 
mid-vlPFC differentially fall on these separate networks, in that anterior vlPFC con­
sistently falls in the ventral network, whereas mid-vlPFC falls on both or strictly on 
the dorsal network. This pattern raises the prospect that the observed difference bet­
ween anterior vlPFC and mid-vlPFC may be reflective of a broader distinction among 
functional networks (Figure 7.3b). 

?-Network parcellation (N=1000) 

(a) 

Anterior VLPFC 

(b) Ventral retrieval path Dorsal control path 

aVLPFC 

SLF 

Figure 7.3 Schematic representation of separable controlled retrieval and post-retrieval con­
trol networks. (a) Seven-network cluster in a sample of 1000 participants (reprinted with per­
mission from Yeo et al., 2011 ) with locations of inferior frontal sulcus (thick line), and anterior 
and mid-vlPFC regions (circles), indicated. Note that these are approximate locations for illus­
trative purposes and have not been established formally. Anterior vlPFC falls within the ventral 
network (red), whereas mid-vlPFC falls on both the dorsal control network (orange) and the 
ventral network (red) or strictly on the former. (b) Proposed distinction between the ventral 
controlled retrieval network and tl1e dorsal frontoparietal post-retrieval control network. The 
ventral controlled retrieval network includes anterior vlPFC (aVLPFC), anterior temporal 
cortex (aTC), anterior parahippocampal gyrus (aPHG), and hippocampus (HPC), whereas the 
dorsal frontoparietal post-retrieval control network includes dorsolateral PFC (DLPFC), and 
inferior parietal lobes (IPS). Other abbreviations: EC, entorhinal cortex; pPHG, posterior 
parahippocampal gyrus. 
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Our lab recently tested this hypothesis by analyzing functional connectivity dur­
ing an episodic memory retrieval task (Barredo, Oztekin, and Badre, 2013). 
Participants performed a single-agenda source monitoring or exclusion task (Jacoby, 
1991). Specifically, at encoding participants performed one of two semantic 
decisions with words (size or organic). Then, at test, they verified whether they had 
performed a target source task with each word, indicating yes or no. Importantly, 
we assume that any evidence of an item being old drives a tendency to endorse the 
item. Thus, these "incongruent" items, in which the correct response for the source 
decision is "no" despite the studied items themselves being familiar to the subject, 
produce decision or response-level conflict in order to either reject the evidence of 
oldness as not diagnostic for the source decision and/or to override the positive 
response. This conflict is evident in increased reaction time (RT) and errors for 
these incongruent items relative to congruent items (which were seen with the 
target source task and entail a "yes" response). Beyond congruency, we also manip­
ulated the association strength between item cues and target source information by 
varying repetition during encoding. A single encounter with an item at encoding 
should produce a weaker memory trace associating that item with its source task 
compared to multiple repetitions. So greater controlled retrieval should be required 
on weak associative strength trials. 

Importantly, controlled retrieval is only affected by associative strength, and is 
insensitive to congruency. This is because congruency does not affect the likelihood 
of retrieval, but concerns how remembered information is related to the current 
response criteria. By contrast, post-retrieval decision processes will show an inter­
action between strength and congruency, wherein strong items are easier to endorse 
than weak items for congruent trials, but strong items are harder to reject than 
weak items for incongruent trials. Therefore, regions showing a main effect of 
associative strength without an interaction with congruency may be sensitive to 
retrieval, whereas regions showing a strength-by-congruency interaction are sensitive 
to post-retrieval factors. 

Using this logic, we observed evidence that anterior vlPFC is a member of a ventral 
retrieval pathway whereas mid-vlPFC affiliates with the dorsal frontoparietal control 
system (see Figure 7.3b ). Specifically, we observed that anterior vlPFC and other 
regions along the ventral pathway, such as anterior temporal cortex, anterior parahip­
pocampal gyrus, and hippocampus, showed effects of controlled retrieval that did not 
interact with congruency. Functional connectivity analysis of these functionally 
defined seeds confirmed that they were members of a common correlated network, 
specifically correlating more with one another than with regions outside of the 
network. By contrast, mid-vlPFC showed an interaction between strength and con­
gruency in the univariate analysis and was functionally connected to dlPFC and 
inferior parietal regions that are members of the frontoparietal post-retrieval control 
network (Dosenbach et al., 2007; Vincent et al., 2008; Yeo et al., 2011). Mid-vlPFC 
did not correlate with the ventral retrieval network. Notably, in addition to coupling 
with the ventral retrieval pathway, anterior vlPFC also correlated with mid-vlPFC 
and the dorsal frontoparietal post-retrieval control network (Figure 7.4). This finding 
potentially suggests that anterior vlPFC acts as a hub, coordinating processing bet­
ween the ventral controlled retrieval system and the dorsal post-retrieval control 
system. But the precise functional significance of this observation is an important 
question for future work. 
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ROI-Ieft lateral ROI-Ieft medial Connectivity network 

Figure 7.4 Functional connectivity along the ventral controlled retrieval network and the 
dorsal frontoparietal post-retrieval control network (reprinted with permission from Barredo, 
Oztekin, and Badre, 2013). Anterior vlPFC functionally couples with aTC, aPHG, and HPC 
(purple, top). Mid-vlPFC functionally couples with d!PFC, IPS, inferior temporal gyrus (ITG), 
and basal ganglia (green, bottom). Comparison across networks illustrates that the overlap bet­
ween frontoparietal control network and retrieval network is primarily limited to aVLPFC. All 
contrasts are valid iANDi conjunctions from false discovery rate (FDR)-corrected seed maps 
thresholded at p < 0.05. Some of the major structures functionally coupling with various seeds 
are labeled as follows: (A) aVLPFC, (B) aTC, (C) aPHG, (D) HPC, (E) lateral PFC (PFCl), 
(F) lateral posterior PFC (PFClp), (G) IPS, and (H) mid-vlPFC. Note that mid-vlPFC lies 
within the sulcus and cannot be seen in lateral view; approximate location only is marked. 

These results provide a broader context for the previous distinctions between ante­
rior vlPFC and mid-vlPFC. Specifically, prior work has defrned vlPFC synonymously 
with the inferior frontal gyrus and has drawn distinctions - such as between anterior 
vlPFC and mid-vlPFC - within this anatomically defined region. However, as noted 
above, the functional boundary between these networks may not be at the inferior 
frontal sulcus. Rather the dorsal frontoparietal post-retrieval control system includes 
the middle frontal gyrus and the caudal and dorsal portion of the inferior frontal 
gyrus. Thus, purely as a matter oflocation within the inferior frontal gyrus, prior def­
initions of anterior vlPFC are more likely to fall on the ventral controlled retrieval 
network, and definitions of mid-vlPFC are more likely to fall on the frontoparietal 
post-retrieval control network or to be on the border of both retrieval and post­
retrieval control networks. 

In this regard, it is notable that tasks previously observed to activate dlPFC are 
those tlut manipulate post-retrieval monitoring (Rugg, Otten, and Henson, 2002; 
Rugg and Wilding, 2000), active inhibition of memories (Anderson et al., 2004; 
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Butler and James, 2010; Depue, Curran, and Banich, 2007; Kuhl et al., 2008), and 
relational operations within working memory (Blumenfeld and Ranganath, 2007; 
Fletcher et al., 1998). Based on the operational definitions of these functions used in 
the literature, it is difficult to draw a clear process distinction between these post­
retrieval/decision-level functions and the concept of post-retrieval selection outlined 
above. It is possible that such distinctions exist and there is further functional special­
ization between mid-vlPFC and dlPFC. However, another possibility raised by the 
connectivity analysis is that this process similarity reflects the fact that mid-vlPFC 
should be functionally grouped with this broader dorsal network. Hence, at least 
one key functional neuroanatomic distinction in control of memory is between 
( 1) processes affecting retrieval directly (controlled retrieval) that are supported by a 
ventral retrieval network and (2) processes operating post-retrieval to align remem­
bered information with current task goals and decision criteria that are supported by 
a more dorsal frontoparietal network. 

Transient Dynamics within Frontal Networks 

In the previous sections, we have described a distinction between control processes 
that operate to influence retrieval itself versus those that operate post-retrieval to 
align retrieval with task goals and decision criteria. Evidence from fMRI has sug­
gested that this distinction is supported by distinct neuroanatomical subsystems. The 
temporal resolution afforded by EEG has provided complementary evidence for this 
distinction (for more on EEG, see Chapter 16). First, these peri- and post-retrieval 
processes should be distinguishable temporally. Event-related potential (ERP) studies 
have shown early posterior ( -400 ms post-stimulus onset) and late right frontal 
( -1000 ms post-stimulus onset) differences between correctly recognized old and 
new items ("old/new effects") during source retrieval (Allan, Wilding, and Rugg, 
1998; Wilding and Rugg, 1996), supporting the presence of multiple temporal com­
ponents during retrieval. Race, Badre, and Wagner (2010) more directly related early 
and late ERP components to retrieval and post-retrieval decision and response 
processes. Participants were asked to make semantic decisions about presented items. 
Items were repeated during the experiment, sometimes with the same decision and 
sometimes with a different decision, allowing item-semantic priming to be separated 
from decision-related priming effects. In ERP, the item priming occurred at an ear­
lier stage than the decision priming, consistent with modulation of early retrieval 
processes versus late decision processes. Thus, the ERP data are largely consistent 
with two temporally distinguishable components related to retrieval versus post­
retrieval decision or monitoring demands. However, given recent insights regarding 
the importance of at least two broad functional networks to controlled retrieval and 
selection, data from EEG can also address the nature of neural dynamics within the 
networks described above . 

Although functional connectivity indicates anatomical connections between frontal 
and posterior brain regions, the mechanism by which these brain regions dynamically 
interact during declarative memory retrieval has not been specified. It has been pro­
posed that neural oscillations provide the means by which brain areas interact to per­
form cognitive tasks (Ba§ar and Schiirmann, 2001; Miller and Wilson, Q008; Varela 
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et al., 2001; see also Chapter 2). Fluctuations in postsynaptic potentials produce local 
oscillations. In addition, oscillators in one brain region can phase synchronize with 
oscillators in another region through long-range connections. A mechanism for inter­
action for botl1 local populations of neurons and large neural assemblies is through 
phase synchronization of oscillations (Miller and Wilson, 2008; Varela et al., 2001 ). 
As neurons oscillate, they effectively open and close their window to both send and 
receive information (Buzsili and Draguhn, 2004; Womelsdorf et al., 2007). For 
information to be transferred from one neuronal group to another, the sending 
neuron must be excitable at the same time that the receiving group is excitable. This 
requires the coupling of oscillations between sending and receiving neurons through 
phase synchronization (Fries, 2005 ). This pattern of neural interaction allows for effi­
cient neural communication through the transient coupling of synchronously firing 
neurons forming functional neural networks. 

There is convincing evidence that neural rhythms contribute to memory retrieval. 
During episodic retrieval, a number of EEG studies have found greater theta power 
for hits than for correct rejections. Moreover, differences in theta power distinguish 
individual differences in episodic memory retrieval performance (reviewed in 
Nyhus and Curran, 2010). We recently proposed that theta oscillations represent 
interactions between brain systems for the control of episodic retrieval (Nyhus and 
Curran, 2010). This hypothesis was initially motivated by studies attempting to 
localize the sources of theta oscillations during episodic retrieval. In general, theta 
power increases are frequently observed in frontal scalp locations during successful 
episodic retrieval, and in frontal and posterior scalp locations for retrieval of specific 
details of tl1e study episode. 

To test whether theta oscillations are related to the control of memory retrieval, we 
conducted three EEG experiments during which subjects performed a source retrieval 
task (Nyhus, 2010) . Results showed right frontal theta power that was greater for old 
than new words. In addition, theta coherence between right frontal and left parietal 
charmels was greater for old than new words, for incorrect than correct memory 
judgments, and for low-confidence than high-confidence response (Figure 7.5 ). 
Post-retrieval monitoring demands should be greater when decisions are uncertain, 
which is more likely for incorrect than correct memory judgments and for low- than 
high-confidence responses. Therefore, these results suggest that transient theta 
interactions in a frontoparietal network are involved in the monitoring of episodic 
memory. 

Although these results suggest that theta oscillations are important for communi­
cation among brain regions in a post-retrieval control network, future research is 
needed to localize the source of these effects, and to determine the frequency of 
communication among the controlled retrieval and post-retrieval control networks. 
For example, though tl1ere are no data on the oscillatory correlates of controlled 
retrieval as distinct from selection, it is notable that semantic retrieval, which is par­
ticularly dependent on anterior vlPFC, has been associated with alpha rather than 
theta band oscillations. Due to tl1eir spatial and temporal limitations, EEG and fMRI 
metl1ods alone are not sufficient to identifY the relationship between oscillations and 
specific functional networks involved in memory retrieval. Future research simulta­
neously recording EEG and fMRI is necessary to examine the relationship between 
oscillatory effects and the functional networks identified with fMRI in declarative 
memory retrieval. 
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Figure 7.5 Theta effects during a source retrieval task (reprinted with permiSSIOn from 
Nyhus, 2010 ). (a) Theta power across all channels from 500 to 800 ms . Black circles mark the 
approximate locations of analyzed channels in right frontal ( channel1) and left parietal (channel 
53) brain regions. Color scale: decibel change from pre-stimulus baseline. (b) Theta coherence 
for all frequencies across one right frontal channel (channel 1) and one left parietal channel 
(channel 53). Highlighted is theta coherence from 500 to 800 ms. Color scale: magnitude of 
cross-coherence from 0 to 1, with 0 indicating absence of synchronization and 1 indicati ng 
perfect synchronization for each frequency at each time-point. 

Conclusion 

In order to deal effectively with our environment, declarative memory systems have 
developed to adaptively retrieve information that is relevant while outweighing the 
costs of retrieval. Although information can be automatically retrieved, cognitive con­
trol of declarative memory retrieval is important for adaptive retrieval. Here, we have 
highlighted one functional distinction in the cognitive control of memory that appears 
to receive support from multiple methods: controlled retrieval versus post-retrieval 
selection. 

As described above, evidence suggests that a ventral retrieval pathway that includes 
the anterior vlPFC biases memory retrieval when memories are not readily accessible. 
A more Elorsal network that includes mid-vlPFC and potentially dlPFC aligns what 
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has been retrieved with task goals by selecting appropriate representations, setting 
decision criteria, and monitoring the outcome of retrieval. These associated networks 
likely coordinate their activity via oscillations, such as in the theta band for post­
retrieval control, the dynamics of which are largely unknown. 

Though progress has been made in understanding how the brain controls memory 
retrieval, a number of fundamental questions remain to be addressed. For example, 
how are memory control strategies learned, evaluated, and adjusted? What are the 
neural mechanisms by which PFC can increase the likelihood of retrieval or select rel­
evant items from working memory? How does anterior vlPFC "know" that memory 
strength is weak and so it is necessary to guide retrieval? Of course, satisfYing answers 
to these questions must be provided without recourse to a "homunculus" or little 
man in the head who just performs tl1ese functions. Rather, formal theoretical and 
computational models tl1at can incorporate findings from neuroscience data are 
required. Thus, in our view, considerable progress on these questions will be made by 
extending existing models of cognitive control to tl1e domain of memory. 
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