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Reclaiming soils to sustain maize and soybean productivity in the Midwestern US given 

climate change 

 

Abstract: I build a model that explains Midwestern US maize and soybean yield as a function of 

weather and soil capability.  Climate change is expected to reduce mid-century maize and 

soybean yields in the Midwest by 8% to 28% and 7% to 23%, respectively, depending on 

cropped land’s soil capability and severity of climate change, compared to baseline values 

calculated with no climate change.  I find that small improvements in the capabilities of the most 

marginal cropped soils can completely reverse the predicted yield losses due to climate change.  

Further, small investments in the reclamation of the Midwest’s least capable cropped soils would 

greatly reduce the risk of low yield outcomes under the future Midwestern climate.  While I 

demonstrate that investments in soil reclamation on the least capable Midwestern soils can 

enhance social welfare under expected climate change (assuming reclamation costs are 

reasonable), economists will need to work closely with agronomists to identify where and what 

types of reclamation projects would generate most cost-effective returns in the Midwest under 

climate change.      
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The summer of 2012 demonstrated how sensitive crop production in is to weather.  Widespread 

drought in the Midwestern US reduced maize and soybean yields in the US’s breadbasket to 

levels not seen on a regular basis since the early to mid-1980s (USDA-NASS 2013).  According 

to climatologists summers like 2012 will become much more routine in the Midwest’s future.  

Besides the greater variation in weather, climatologists also predict warmer growing season 

temperatures in the region’s future (Kunkel et al. 2013). 

We can expect Midwestern farmers and agricultural institutions to implement various 

measures to reduce the negative impact that greater weather variability and warmer growing 

season months will have on maize and soybean yields (Schlenker and Roberts 2009, Smith and 

Olesen 2010, Moriondo et al. 2010).  Some of these adaptations will be made possible by 

innovations in biotechnology and crop science (e.g., Royal Society 2009).  Reclamation of the 

region’s least capable cropland soils is another way to maintain or improve the area’s agricultural 

productivity in the face of climate change (Hatfield et al. 2008, Backlund et al. 2012).  

According to USDA-NRCS (2012) the capability of cropland soils can be improved by 

establishing major drainage facilities, building levees or flood-retarding structures, providing 

water for irrigation, removing stones, large-scale grading of gullied land, and other projects that 

permanently change the soil’s limitations.  

In this article I estimate the impact of soil reclamation projects on expected 2050-2058 

maize and soybean yields and net revenues in the Midwest under several scenarios of climate 

change.  First, assuming no changes in Midwestern soil capability, I find that, on average, 

climate change will reduce mid-21st century maize and soybean yields in the Midwest by 8% to 

28% and 7% to 23%, respectively, depending on cropped land’s soil capability and severity of 

climate change, compared to baseline values calculated with no climate change.  Second, I find 
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that small investments in cropland soil’s capability can ameliorate some of these expected losses, 

and in some cases, completely reverse the predicted yield losses due to climate change.  In 

monetary terms I estimate that relatively minor soil reclamation on the representative maize field 

with the least capable soils would mean an additional $45 (2000 USD) of net returns per acre per 

year by 2050-2058 assuming 2000-2008 commodity prices and production costs (not including 

the private amortized costs of soil reclamation; USDA-ERS 2013).  And on a representative 

soybean field with the least capable soils relatively minor soil reclamation is expected to produce 

an extra $27 (2000 USD) of net returns per acre per year assuming 2000-2008 commodity prices 

and production costs (not including the private amortized costs of marginal soil reclamation; 

USDA-ERS 2013).  Given that the average net return to an acre of maize and soybeans was $95 

and $178 (2000 $), respectively, in the Midwest from 2000-2008, additional returns from small 

investments in soil reclamation could be non-trivial.  I also find small investments in soil 

reclamation can greatly reduce the likelihood of a very low yield outcomes; a benefit that risk 

adverse farmers may value even more highly than an increase in expected returns given the 

rapidly increasing variability in growing season weather.  In short, my research shows that 

investments in soil reclamation on the least capable Midwestern soils could be part of a portfolio 

of cost-effective adaptive measures to expected climate change.  

One of global society’s greatest 21st century challenges will be to find a way to meet a 

growing global population’s demand for food while minimizing the rate of agricultural-driven 

environmental degradation (e.g., Foley et al. 2011).  However, the imperative of the first goal 

will mean that the latter preference is likely to be sacrificed unless we become much better at 

utilizing the cropped soils we already use.  Investing in the reclamation of the more marginal 

cropped soils is one way to make our already cropped land more productive.  Surprisingly, the 
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strategy of improving soil resources to help meet the increasing global demand for food while 

minimizing the impact of agricultural production on the environment has received little attention 

in the recent literature on the challenges facing 21st century global agriculture.  For example, 

recent prominent papers on how to enhance agricultural productivity around the world at least 

cost to the environment have focused on using fertilizers and irrigation water more strategically 

and eliminating policies that promote food as biofuel feedstock but have said next to nothing on 

improving cropland soil capabilities (e.g., Foley et al. 2011, Tillman et al. 2011, Mueller et al. 

2012).  I believe that ignoring the role that soil reclamation can play in meeting future 

agricultural challenges is a glaring omission given my results.  Hopefully this paper will focus 

additional research and policy attention on this complementary adaptation strategy of cropland 

soil improvement.  

In the next section I explore the historical relationship between weather, soil capability, 

time, and maize and soybean yields in the Midwest US.  Next I describe the statistical model that 

I use to relate maize and soybean yields in the Midwest to growing season weather, cropland soil 

capabilities, and temporal trends in crop productivity.  Then I explain how I measure the 

expected impact that small investments in soil capability can have on maize and soybean yield 

and monetary returns.  Finally, I predict the impact that marginal soil capability improvements 

could have on crop yields in the Midwest by the middle of the 21st century given climate change.         

 

Long-term trends in maize and soybean yields in the Midwest 

I focus on maize and soybeans because they have become the most important Midwestern crops 

both in terms of area planted and value.  For example, by 2007, 38% of the region’s harvested 

cropland was in maize for grain and 27% in soybeans.  Further, 50% of the region’s crop revenue 
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in 2007 was derived from maize for grain and 26% from soybeans (USDA-NASS 2009).   

Therefore, determining ways to safeguard the productivity of these two crops in the face of 

climate change will be vital to the health of the Midwestern agricultural economy and necessary 

to keep maize and soybean-based food and animal feed affordable throughout the world (Parry et 

al. 2007). 

Although there are twelve Midwestern states, I restrict my analysis to six, Illinois, 

Indiana, Iowa, Michigan, Minnesota, and Ohio, primarily to limit the size of the database and to 

avoid the complicating factor of irrigation.i  Irrigation use, because it can substitute for 

insufficient precipitation, can obfuscate the impact of weather on crop yields unless the modeler 

can properly control for its use (Schlenker et al. 2006).  Unfortunately, data on annual irrigation 

use across different crops has only recently been systematically cataloged by the USDA and this 

study includes yield data from as far back as 1950.  To avoid this omitted variable problem I 

only include Midwestern states where irrigation is rarely used to produce maize and soybeans.  

For example, in 2007 the six states included in this study only irrigated 2.6% of their maize for 

grain acres and 1.07% of their soybean acres.  The Midwestern states not included irrigated 

31.10% of their maize for grain acres and 12.19% of their soybean acres (USDA-NASS 2009).   

Other then the irrigation differences, there is every other reason to believe that these six states 

are collectively representative of the Midwest.  There are no unique soil capability patterns and 

management styles in the omitted states and over time all states included in this study have had 

growing seasons typically experienced by the omitted states.  Finally, the six states I have chosen 

produce the bulk of the region’s maize and soybeans (USDA-NASS 2009).ii   

Using data from USDA-NASS (2013), I create a 1950 to 2008 dataset with annual 

county-level area planted and harvested and average yields for maize for grain and soybeans 
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across six Midwest states where c indexes counties and j = m or s indexes maize for grain or 

soybeans, respectively.  Let average county-level yield of crop j in county c in year t be given by 

Yjct.  Let Ajct indicate the percentage of county area used to harvest crop j in county c in year t.   

To this crop production dataset I append county-level growing degree day (GDD) and growing 

season precipitation (PRECIP; measured in mm) values for maize for grain and soybean 

production for the years 1950 to 2008. I calculate county-level GDD and PRECIP for each crop j 

and each year t using gridded maps of average monthly weather data (CRU 2010) and typical 

planting and harvesting dates for each crop (Sacks et al. 2010).  When calculating GDD and 

PRECIP I assume planting and harvesting dates remained static from 1950 to 2008 (see 

Appendix Text A for more information of the calculation of GDDjct and PRECIPjct). 

Next I calculate a time-invariant soil capability score for each county c, given by Lc. 

County c’s soil capability score is higher if c’s soil profile has a greater density of more capable 

soils (Radeloff et al. 2012).   Then I divide the study area’s counties into 5 groups (quintiles) 

according to ranked Lc scores.  The 20% of counties with the greatest density of capable soils as 

measured by the soil statistic Lc are grouped together in the set labeled S5, the 20% of counties 

with the next most capable soils are grouped together in the set labeled S4, etc.  Let q = 1,…,5 

index the soil capability classes in ascending order of capability.  I use soil capability bins 

because I want to jointly model the effect of soil capability and county-level fixed effects on 

yield; if I used each county’s time-invariant Lc score to describe its soil resources I could not fix 

the overall county effect on yield.  (See the Appendix Text B for more information on the 

calculation of Lc and the creation of the sets Sq.)   

Before building a model that explains maize and soybean yield as a function of weather, 

soil capability, and time I present evidence that historical county-level maize and soybean yields 
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in the Midwest are correlated with my summary statistics of county-level growing season 

weather and soil capability in expected ways.  In figure 1 I plot the GDDmct and PRECIPmct 

values for the ten highest and ten lowest Ymct for each {Sq; t} combination.   I separate the data by 

decade in order to visualize any trends over time. The figure suggests that maize production has 

a GDD “sweet spot” (indicated by the gray boxes in each decadal subplot) that has generally 

grown larger over time, accommodating both cooler and warmer than normal growing seasons.  

However, despite showing greater capacity to deal with abnormal weather, very low and very 

high GDDmct is still associated with sub-par yields (e.g., Lobell and Asner 2003, Schlenker and 

Roberts 2009).  Finally, figure 1 indicates that GDDmct appears to be more limiting than 

PRECIPmct when it comes to crop performance: low and high precipitation levels both were 

associated with high performance.  The highest and lowest county-level soybeans yields display 

a similar relationship with GDDsct and PRECIPsct (see Appendix Text C for a soybean version of 

figure 1). 

Further evidence that the county-level weather and soil capability variables I have 

constructed are good approximations of historical agronomic conditions in the Midwest comes 

from the estimated correlation between county-level weather, soil capability, and the percentage 

of planted maize and soybean harvested in a county.   A planted crop is less likely to be 

harvested, or in the case of maize, harvested for grain (stunted maize unsuitable for grain can be 

used for silage) if its growing season includes one or more incidences of extreme weather (Weiss 

2007, Hatfield et al. 2008, Thomas 2012).  At the same time, crops on more capable soils should 

be more resilient to extreme weather that could lead to crop failure, all else equal (a soil’s 

capability score is partly based on the risk of a crop failing on it).  To test that my dataset 

corroborates these intuitive notions I estimate a model of county-level crop failure rates from 
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1950 to 2008 that are explained by the weather and  soil capability class variables in my datatset.  

As expected, I find that very low or high GDD and PRECIP (extreme weather incidences during 

the growing season will tend to drive GDD and PRECIP much lower or higher than normal) and 

declining soil capability increase the rates of maize and soybean failure in a county (see 

Appendix Text D for detailed estimation results). 

  Finally, the averages of county-level yields by soil capability class are consistent with 

intuition: as Sq increases the average of annual county-level yields across the entire time frame 

improve and relative variability in yields decreases (see Appendix Text E).  Therefore, to 

summarize, the biophysical dataset I have created to describe agronomic conditions across the 

Midwest over time is correlated with yield outcomes in expected ways.  

 

Explaining Midwest maize and soybean yields as a function of weather, soil capability, and 

time 

For the set of counties in set Sq I regress crop j’s yield in county c in year t on time, county c’s 

growing season weather for crop j in year t, and the distribution of land use in county c in year t,   

 

���� = �� + ��� + ���� + ����� + ��������� + ���������� + �	���	
����� (1) 

+�
���	
������ + ������� + ����
��� + �������       

 

where the coefficient �� fixes the effect of county c’s unique time-invariant unobserved variables 

(biophysical, economic, managerial, political, and cultural) on its yield of j across time, ���� 

indicates the percentage of the county’s area used for winter and spring wheat harvest in year t, 

the index –j indicates the other modeled crop (soybeans or maize), and all other variables are as 
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before.  While I also assume that soil capabilities in each county were fixed from 1950 to 2008 

but I am able to identify the impact of soil capability on yields by estimating (1) for groups of 

counties with similar soil capabilities and comparing estimated results across soil groups (see the 

‘Robustness Checks’ section for evidence that my assumption of fixed soil capabilities is not 

problematic even though some counties may have changed their soil’s capability enough to 

warrant membership in another soil capability group). 

In this model time is a proxy for productivity growth in maize and soybeans driven by 

technology and managerial know-how.  I include the quadratic term for year in the model to 

account for any non-linear productivity or ‘trend yield growth’ trajectories (Lobell and Asner 

2003) for each {Sq, j} combination.  To capture the non-linear impact growing season weather 

can have on crop growth, I include squared terms of ������ and ��	
����� model (1) 

(Schlenker and Roberts 2009).  I include a variable for winter and spring wheat area because it 

was the 3rd most harvested crop in this six state region over the 1950-2008 time frame.  The 

percentage of land in all other uses in county c in year t, given by 100 − ���� − �
��� − ����, is 

omitted from (1) to avoid perfect multicollinearity (see Appendix Text E for on the land use 

allocation variables).   

I use the land use allocation variables in an attempt to overcome a modeling shortcoming 

associated with using county-level data.  If I could combine field-level maps of annual maize and 

soybean production with the already existing field-level soil maps then my yield model much 

more accurate as I could create sets of fields with similar soil capabilities rather than sets of 

counties with similar soil capabilities.  However, field-level crop maps for the Midwest have 

only been published since the late 1990s and therefore I am forced to use county-level areal 

measures of crop production.  This data limitation requires me to generally assume that a 
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county’s overall distribution of soil capabilities matches the distribution of soil capabilities used 

to produce j.  This assumption is generally not problematic for counties with larger Ajct; as the 

variable approaches 1 it is more and more likely that the soil profile used to generate j in c at 

time t is well described by the county’s soil capability summary statistic Lc.  However, fro 

counties with lower Ajct values it is increasingly likely that j’s production occupies a soil space in 

c that is not representative of c’s soil capability class (although the previously reported finding, 

that as Sq increases the average and variance of county-level yields has improved and decreased, 

respectively, from 1950-2008, indicates that the incidences of class misrepresentation are 

infrequent even in the most lowest soil capability classes).  Further, in counties where Ajct is low, 

marginal expansion or contraction in j’s harvested area over time has a greater capacity to alter 

the relative mix of soil capabilities used to grow j than in counties where Ajct is consistently high.  

Therefore, by including area variables in the model I potentially control for the effect marginal 

changes in the relative mix of soil capabilities used to grow j can have on the county-level yield 

of j, especially in counties with lower Ajct values.  

  The entire set of estimates of model (1) for all { Sq; j} combinations are given in 

Appendix Text G.  Here I discus the highlights.  For maize specifically, county-level yields 

exhibit the expected inverted U-shape response to growing season weather across all soil 

capability classes.  Warmer and/or wetter growing seasons have a positive impact on yield up to 

a point; eventually too much warmth and wetness begins to drag yield down.  Further, as 

expected, county-level maize yields in all soil capability classes have increased over time, all 

else equal, due to innovations in technology and management (Duvick 2005).  However, maize 

‘trend yield growth’ has not progressed equally across soil capability categories.  Trend yield 

growth has been decelerating across S1 counties since 1950 and accelerating in all other classes.  
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Further, the greatest acceleration rates are currently found in S3 and S4 counties; up to 1990 S5 

counties displayed the greatest acceleration in trend yield growth (see the Appendix Text H for a 

graph of trend yield growth trajectories by capability class). 

Counties with high levels of cropped area also tend to have the most capable soils.  

Therefore, when I find the effects of the crop area variables on maize yield are smaller across S4 

and S5 counties I am finding that slight changes in areal distribution of crops has had little effect 

on county-level maize yields in counties with significant maize, soybean, and wheat acreage.  In 

other words, in higher soil classes the profile of soils used to grow maize is relatively stable over 

time.  In contrast, larger estimated coefficients on Amct  in the S1 and S2 groups (areas less 

devoted to maize, soybean, and wheat production in general) indicates that the profile of soils 

used for maize production in these areas is more malleable over time.  Specifically, I deduce that 

maize for grain tends to use the better soils in S1 and S2 counties as its footprint expands in these 

counties.  Further, the use of the upper tail of a county’s soil capability profile in the lower 

capability class counties appears to be, at least historically, a competition between maize and 

wheat production.  As wheat area in S1 counties has gone up, presumably supplanting some 

maize area, maize yields have declined, and as maize area has increased, presumably supplanting 

some wheat area, maize yield has increased, all else equal              

The trends in soybean yield as explained by weather, soil, time, and crop area effects are 

remarkably similar to maize’s, with one exception: ‘trend yield growth’ trajectories for soybean 

production across S2, S3, S4, and S5 counties are much more similar than they are for maize 

production across these same 4 county groups (see Appendix Text H).  

   

Establishing a temporal baseline for the soil reclamation and climate change analysis  
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To estimate the effects that changes in climate and cropland soil capability could have on 

Midwestern maize and soybean yield I first estimate county-level yields for the base period 

2000-2008 for each soil capability class.  To do this I use observed explanatory variable levels 

from 2000-2008 and estimated model (2) results.  The distribution of 
�� values – predicted 

2000-2008 average annual yield of crop j in county c – for each {Sq; j} combination are graphed 

in figure 2 (predicted yield distributions over the 9 year period are remarkably close to observed 

distributions; see Appendix Text I).  As expected, the predicted average annual 2000-2008 

county-level maize (first column of histograms) and soybean (second column of histograms) 

yield distributions shift to the right in soil class; distribution means become larger and county-

level yields below any given yield level, for example, 100 bushels of maize per acre, become less 

probable as q increases.iii    

 

Using soil resources more efficiently to increase recent maize and soybean production 

Before estimating the future impact of investments in soil reclamation under climate change I 

explore how different Midwestern maize and soybean yields would have been from 2000-2008 

under what I will call “marginal” soil reclamation.  By marginal reclamation I mean reclaiming 

the soil enough in an area such that it mimics the soil capability of the representative acre from 

the next highest soil capability class.  So, for example, marginal soil reclamation on an acre that 

belongs to set S1 would mean that its soil capability is improved just enough to mimic the 

capability of the representative S2 acre.iv   

To estimate the counterfactual 2000-2008 Sq yield distribution with marginal soil 

reclamation, all else equal, I use the weather from Sq counties from 2000-2008 with Sq+1’s 

estimated yield functions where ����, �
���, and ���� values are set equal to the average values 
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observed from 2000-2008 in Sq+1 counties.v  I am not literally assuming that Sq counties would 

adopt the same exact relative land-use mix as Sq+1 counties when reclaiming soil; instead recall 

that the harvested area variables help identify how the soil profile within a soil class is used at 

any given time.  In other words, by using the (q+1)th class’ annual average ����, �
���, and ���� 

values and its estimated model coefficients to estimate the effect of reclamation in Sq counties I 

am essentially moving the soil typically cropped in Sq+1 counties during 2000-2008, and how that 

soil interacted with weather and technological innovation trends, to Sq counties.  For example, 

consider the counterfactual effect of marginal soil reclamation on maize yield from 2000-2008 in 

county c that belongs to soil capability class Sq.  County c’s predicted maize yield in year t 

assuming that it acquires the soil capability used on a typical class q+1 field from 2000-2008 is 

given by,  

 


���� = ������ + �������� + �������� + ������������� + �������������� + (2) 

��	������	
����� + ��
������	
������ + ��������̅���� + 

��������̅���� + ��������̅����         

 

where ������� indicates that the estimated coefficient from the Sq+1 maize model, �̅���� is the 

average percentage of county area used to harvest j across Sq+1 counties over the years 2000-

2008, and the maize growing season weather for year t is given by county c’s growing season 

weather for that year.  Let 
��� = �∑ 
��������
������ � 9⁄  give the average annual 2000-2008 county-

level yield of maize in c such that its cropped soil has been reclaimed enough to become a typical 

acre in Sq+1.  I calculate 
���  in the same manner.  The distribution of 
���  and 
���  values across 

set Sq for q = 1,…,4 are graphed in figure 3 (S5 yields cannot be marginally improved). 
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As expected, marginal soil reclamation causes the distribution of average annual 2000-

2008 county-level yields to shift to the right for all {S1,…,S4; j} combinations compared to the 

2000-2008 distributions without marginal reclamation.  For illustrative purposes assume that 

only the representative (mean) acre of maize and soybeans from each class S1,…,S4 is marginally 

reclaimed.  The representative acre of maize from class S1 would have experienced the largest 

relative increase in annual average yield due to marginal reclamation, increasing by 17% (120.1 

to 140.4 bushels per acre; see Appendix Text L).  In other cases, the annual average yield 

improvement on the representative acre would have been small.  For example, the representative 

soybean acre in S3 would have increased its annual average yield only by 2% (42.9 to 43.7 

bushels per acre) with marginal reclamation (see Appendix Text L).  

However, marginal reclamation’s biggest impact from 2000-2008 would have been found 

in the lower tail of each Sq’s average annual county-level yield distribution.  For example, to 

keep annual net revenues (production value less operating costs but before any reclamation 

costs) on a maize acre from falling below $150 during 2000-2008, Midwestern farmers had to 

produce approximately 140 bushels on the acre (USDA-ERS 2013).  Marginal reclamation 

would have reduced the probability of the representative acre’s average annual yield from falling 

below 140 bushels by 42%, 26%, 14%, and 16% for S1, S2, S3, and S4 counties, respectively.  

Similar reductions in the probabilities of low-yield outcomes would have held for soybeans as 

well (see Appendix Text L).  Therefore, counterfactual marginal reclamation, all else equal, 

would have had a much more significant impact on the reduction in the risk of low yield 

outcome than on average annual yields.vi   

 

Predicted Midwest maize and soybean yields at mid-century 
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Between the periods 1950-1958 and 2000-2008, average maize and soybean GDD across the six 

states examined in this paper barely changed.  However, there was some variation within areas 

defined by soil capability class.  The greatest absolute change was a 4.5% increase in S1’s 

average maize GDD.  Interestingly, the greatest negative change in average GDD was also in the 

S1 region as well: a -2.7% decline in average soybean GDD.  Because Midwestern soybeans tend 

to be planted later and harvested earlier than maize (Sacks et al. 2010), these opposing trends 

indicate that temperatures during the height of the summer over S1 counties had decreased a bit 

between 1950-1958 and 2000-2008 while temperature increases in the spring and fall more than 

made up for the slight midsummer decline.  Changes in PRECIP have been more dramatic over 

this period for both crops as average maize PRECIP between 1950-1958 and 2000-2008 

increased by 10% or more across most soil capability class areas.  That wetter springs and falls 

have become more the norm over the six state area is evinced by the fact that maize PRECIP 

average changes were higher than soybean PRECIP average changes in all 5 soil capability 

categories (Baker et al. 2012; Appendix Text M).      

Most climate models predict much more rapid climate change over these six states in the 

next 50 years than in the previous half-century (Backlund et al. 2012).  Summer temperatures are 

expected to increase 2.2 to 3 degrees Celsius from the late 20th century to the mid 21st century 

over most of the study region (Girvetz et al. 2009, Appendix Text N).  Given appropriate 

reactions in planting dates by strategic farmers this is expected to increase GDD for maize and 

soybeans in the Midwest by 200 to 400 or approximately 10 to 20% above 2000-2008 levels 

(Shively et al. 2008, Zavalloni et al. 2008). Predicted changes in the study area’s growing season 

precipitation over the next 50 years are directionally mixed; it appears some areas will become a 

bit drier while other areas will become slightly wetter compared to previous levels.  However 
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there is a growing consensus that the upper Midwest will become even wetter in the spring 

(continuing a trend I have already detected from 1950-1958 to 2000-2008) and slightly drier in 

the summer months (Baker et al. 2012, Hatfield et al. 2013). 

Agricultural technology and know-how will also increase over time.  If we extrapolate 

estimates of model (1) out to 2050-2058, maize and soybean trend yield growth continue to 

increase at an increasing rate for all soil capability classes except S1.  In S1 areas the trend growth 

from 2000-2008 to 2050-2058 is increasing at a decreasing rate for both crops (Appendix Text 

H).  Whether the extrapolated productivity trajectories in Midwestern maize and soybeans 

production can be achieved given recent public divestments in agricultural R&D and expected 

climate change is uncertain.  Several researchers claim that much of the increase in maize and 

soybean productivities seen from 1950 to early part of the 21st century in the Midwest were 

driven by high levels of US government R&D funding from 1950 to 1970 (e.g., Alston et al. 

2009, 2010).  Since 1970 government funding has dropped significantly (although some has been 

made up by more private company R&D) and it has been speculated that this will eventually 

reverberate in lower that historical yield gains (Long and Ort. 2010).  Further, climate change 

may affect productivity growth: for example, David Lobell claims that each 1 degree Celsius 

increase in average temperatures results in a 5 to 6 year setback in trend yield growth (Hertel 

2011). Given a predicted 2.2 to 3 degrees Celsius increase in summer temperatures (see above) 

this means climate change could cause a 11 to 18-year delay in reaching the ‘no climate change’ 

2050-2058 trend yield growth.     

I use the following parameterized model to estimate the county-level yield of crop j in c 

for the years 2050-2058, 
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����	� = ����� + ������� + ����+ ������� + ����
�
+ ����������������   (3) 

+����������������
�
+ ��	��������	
������+ ��
��������	
������

�
 

+��������� + ������
��� + ���������  for t = 2000,…,2008   

 

where ���, and ��� and xjc allow for the possibility of climate change and changes in the rate of 

yield productivity, respectively.  The variable xjc is set equal to 50 if I assume j’s trend yield 

growth in county c will continue into the future at the rate that it did for j in c’s soil capability 

class from 1950 to 2008 (the ‘historical rate’) and I set xjc less than 50 if I assume technological 

progress in c will continue into the future at a rate lower than j’s historical rate in c’s soil 

capability class.  The parameters ��� and ��� indicate the expected value of county c’s annual 

GDDjct and PRECIPjct, respectively, for the years 2050 to 2058 relative to their 2000 to 2008 

values.  For example, if I set ��� equal to 1.2 then GDDjct for 2050 would by 20% greater than 

the GDDjct in 2000, 20% greater in 2051 compared to 2001, etc.  Finally, in the year 2050 the 

variable ���� is equal to the percentage of county c in j harvested area in the year 2000, in 2051 

���� is equal to the percentage of county c in j harvested area in the year 2001, etc.vii  Finally, 


��∗ = �∑ 
����	�����
������ � 9⁄  is the average annual 2050-2058 county-level yield of j in county c 

given the 2000-2008 observations for ����, ����, and ���� and assumptions regarding climate 

change and yield trend growth as specified by ���, ���, and xjc.   

 Given the discussion above regarding expected trends in GDD, PRECIP, and yield trend 

growth I define three representative 2050-2058 scenarios.  Let the ‘no change’ future be given by 

xjc = 50, ��� = 1, and ��� = 1 for all c in all soil capability classes and both j.  In other words, the 

‘no change’ future assumes the unmodified extrapolation of all historical trajectories of 
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productivity gains and no change in the climate between 2000-2008 and 2050-2058 over the six 

states.  I also define two alternative scenarios where climate patterns and yield trend trajectories 

change.  The ‘worst’ scenario, the scenario that would drag 2050-2058 yields down the most but 

is still squarely within the realm of possibility, is equal to ��� = 1.2, ��� = 0.9, and xjc = 32 

across all c and j.  The most benign or ‘best’ alternative, the scenario of change that would drag 

2050-2058 yields down the least but is still squarely within the realm of possibility, is equal to 

��� = 1.1, ��� = 1, and xjc = 39 across all c and j. 

In figure 4 I present the distribution and means of average annual 2050-2058 county-level 

maize and soybeans yields under the two alternative scenarios of change for all soil capability 

classes.  I also plot the mean of the distribution of average annual 2050-2058 county-level maize 

and soybeans yields under the ‘no change’ scenario for all soil capability classes.  Therefore, 

depending on soil capability class and modeled future, I project an 8% to 28% decline in mean 

county-level maize yields and a 7% to 23% decline in mean county level soybean yields 

compared to ‘no change’ means by midcentury.  The counties with the most marginal soils are 

affected the least by expected climate change simply because yield trend growth in these areas is 

already weak. 

A closer look at expected 2050-2058 county-level yield distributions reveals several 

interesting trends.  First, by 2050-2058 the distribution of annual average county-level maize 

yields across the S4 and S5 class have converged under both futures of change; this result is 

primarily driven by the higher rate of yield trend growth in S4 counties compared to the 

extrapolated trend in S5 counties.  Therefore, soil capability is no longer a limiting factor in S4 

counties by 2050-2058 when it comes to maize production.  Second, the divergence between the 

distribution of county-level maize yields in S1 counties and the distributions across all other soil 
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capability classes increases dramatically compared to the 2000-2008 gap.  This is caused 

primarily by the accelerating yield trend growth in sets S2 through S5 versus the decelerating 

trend in the S1 set of counties.  Expected divergence between soybean yields on S1 soils and 

yields in all other Sq soils is not as dramatic as it is with maize.  While trend yield growth for 

soybeans is decelerating in S1 counties as well, the acceleration of trend yield growth in the 

higher Sq is not as intense for soybeans as it is for maize. 

Finally, the difference in maize and soybean productivity across the two alternative 

futures of change is large.  To get an understanding of the gap consider the following.  When I 

use the mean of annual 2050-2058 county-level yields for each soil capability class, assume 

2000-2008 average net returns to a bushel of maize and soybeans from the six state area holds in 

2050-2058 ($0.75 and $3.89 in 2000 $, respectively; USDA-ERS 2013), and the 2000-2008 areal 

distribution of maize and soybeans across the six states exists in 2050-2058 then the ‘worst’ 

scenario will generate $926 million and $946 million (2000$) less in average annual maize and 

soybean net returns, respectively, in the six state area than the more benign future.  This loss is 

equivalent to 22% and 15% of average annual net return to maize and soybean production, 

respectively, in the six states from 2000-2008. 

Finally, the impact of marginal soil reclamation on maize and soybean production from 

2050-2058 on S1 and S2 soils is predicted to be significant (figure 5).  (Marginal soil reclamation 

for 2050-2058 is modeled the same way it is for the counterfactual 2000-2008 marginal soil 

reclamation analysis.)  Expected yield on the representative acre of maize and soybeans on S1 

soils is expected to increase by 39.4% to 41.8% and 13.9% to 14.0%, respectively (assuming the 

worst and best climate-yield trend scenarios, respectively) with marginal soil reclamation, all 

else equal.  Notice how this completely reverses the predicted yield losses due to climate change 
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for maize under both climate scenarios and for soybeans under the “Best” scenario (figure 5).  

On the representative S2 acre marginal reclamation is expected to increase average annual maize 

and soybean yields by 2.7 to 4.4% and by 2.4% to 2.3%, respectively.  In table 1 I summarize 

what these changes at the means might mean for economic returns.   

However, the reduction in the risk of low yields may be more important to risk adverse 

farmers than any increase in average yields.  For example, the risk of average annual maize yield 

on the representative acre from the S1, S2, and S3 categories falling below 200 bushels from 2050-

2058 under the ‘worst’ future scenario is 51%, 17%, and 7% less likely with marginal 

reclamation, respectively.  Further, the risk of average annual maize yield on the representative 

acre from the S1, S2, and S3 categories falling below 220 bushels from 2050-2058 under the ‘best’ 

future scenario is 61%, 28%, and 11% less likely with marginal reclamation, respectively 

(Appendix Text O).   See table 2 for a similar analysis with soybeans.  

   

Robustness Checks 

I undertake several statistical tests to verify the robustness of the results discussed above.  First, I 

test for any spatial autocorrelation in the model.  Variation in weather across time is usually 

considered a random process, but patterns in weather across space can be highly correlated 

(Auffhammer et al. 2013).  If a yield model accounts for all weather characteristics that affect 

crop growth then this spatial autocorrelation is a non-issue when it comes to model estimation.  

However, if my yield model omits one or more spatially correlated weather characteristics that 

affect crop growth, such as wind, humidity, or the number of days with extreme heat, then the 

standard errors of model (1)’s estimated coefficients will be biased (i.e., the standard errors of 

the estimated model coefficients will be larger once we correct for spatial autocorrelation).  In 
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other words, my earlier claims of strong statistical significance across most estimated 

coefficients of model (1) could be erroneous. 

To correct for spatial autocorrelation in standard error estimates of model (1) I use a 

grouped bootstrap technique where years are resampled and replaced (Auffhammer et al. 2013; 

see Appendix Text P for the grouped bootstrap results).  Summarizing the main findings of the 

analysis here, I find that using bootstrapping to correct for spatial autocorrelation has a negligible 

effect on the statistical significance of model (1)’s estimated coefficients.  Across all {Sq; j} 

combinations only a few variables that were statistically significant in the original estimate of (1) 

become statistically insignificant  with grouped bootstrapping . To conclude, the spatial 

autocorrelation that does exist in my model has a negligible effect on the statistical strength of 

estimated results.           

 I am also concerned about the consistency of county membership in soil capability 

classes over time.  The land capability class map I use to create each county’s time-invariant Lc 

score and the sets of Sq has been constructed over the last 30 years (USDA-NRCS 2013).  

Therefore, it is possible that a county had a different Lc score and therefore belonged to a 

different soil capability class in the past than it does now.  For example, extensive drainage tiling 

in a county at any point between 1950 and 2008 could have changed its capability class.  If 

relatively large changes in Lc scores were frequent from 1950 to 2008 then my analysis is likely 

to be erroneous as class membership in many years would be incorrectly defined.  For example, 

if one county currently in class S4 was in class S3 in the 1950s and 1960s and all other S4 counties 

have been accurately classified from 1950 to 2008 then predicted yields for class S4 are likely 

biased downward due to inclusion of lower soil capability yield observations in the portion of the 

dataset coded as S4 counties. 
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However, there are several reasons to believe that county movement across capability 

categories over time is not a pervasive phenomenon.  First, according to Robert R. Dobos, Soil 

Scientist at the USDA’s National Soil Survey Center, once land has “been assigned [a soil 

capability classification], it is unusual for the classification to be changed. This can be 

problematic when adjacent states do not agree on the [classification] of a soil.  But, by and large, 

the class is pretty stable…” (personal communication).  Further, Mr. Dobos does not think soil 

reclamation projects are widespread currently.viii   Therefore, significant changes in Lc since the 

1980s and 1990s would appear to be rare and changes in a counties Sq membership even rarer 

given that a change in Lc does not always result in a shift to a different soil capability class. 

Next I consider the period between the 1950s and the 1970s, before the advent of the soil 

capability maps and Mr. Dobos’ professional recollections.  First, I identify counties that 

experienced a structural shift in yield patterns between the periods 1950-1979 and 1980-2008 

relative to the overall performance of their soil capability class cohort that cannot be explained 

by relative changes in weather or intra-county use of croplands.  In such cases, a change in soil 

capability is one of the few omitted variables that could explain the structural shift in the 

performance of a county relative to its cohort over time.ix   Next I re-estimate model (1) for all 

{ Sq; j} combinations only using the counties that did not experience an unexplained structural 

shift in yield of j relative to its cohort.  In other words, I re-estimate model (1) only using 

counties that offer no evidence of a change in soil capability class between the periods of 1950-

1979 and 1980-2008.  If model estimates with the subset of retained counties are the same as 

model estimates with the full set of counties for all { Sq, j} combinations then I can conclude that 

inclusion of counties that may have changed soil capability class between 1950 and 2008 in my 

dataset does not ultimately invalidate the conclusions I have reached and described above. 
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Specifically, to run this test I estimate the following for each {c, j} combination 3 times, 

 


��� = ���� + ����
�������� + ���������� + ����������� +   (4) 

������	
����� + �	����	
������ + �
������     

 

once for the period 1950 to 1979, another for the period 1980 to 2009, and finally for the period 

1950 to 2009.  The variable 
����(�)� is the average county-level yield of crop j in year t across all 

counties that belong to c’s soil capability class.  Therefore, the estimate of ���� will indicate how 

county c’s yield over time fits into the yield distribution of its county cohort over time 

controlling for weather and j’s areal distribution in c.  Assuming that 
����(�)� is relatively 

insensitive to a change in the soil capability of a few of its county members over time,x any 

structural change in the estimate of model (4) for c means that c has, over time, significantly 

changed its performance relative to its cohort.  I interpret such structural change as indirect 

evidence of a possible soil capability change, for good or bad, in county c (soil capability can 

erode over time as well; Quine and Zhang 2002, Cruse and Herndl 2009, Becklund et al. 2012).  

Statistical evidence for structural change in county c for crop j between period 1950-1979 and 

1980-2009 is found with a Chow Test.  Any county c for a given crop j that cannot support the 

null hypothesis of no structural change at a p-level of 0.05 is dropped from crop j’s dataset.   

After I re-estimate model (1) for all {Sq; j} combinations only using the counties not 

dropped from j’s dataset I use 2000-2008 explanatory variable data from the remaining counties 

to estimate the distribution of 2000-2008 county-level yield averages for each crop j across each 

soil capability class.  The striking similarity between the predicted distributions with all counties 

(figure 2) and those estimated with the retained counties after the Chow Test indicates that the 
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results of this analysis are insensitive to the use of the full or reduced datasets (see Appendix 

Text Q for details) and that any instances of counties switching soil capability classes over time 

do not affect my main conclusions. 

 

Discussion 

In this paper I have estimated the functional relationships between maize and soybean yield and 

growing season weather, soil capability, and time in six Midwestern US states.  I use data on the 

allocation of land use within a county to control for the intra-county allocation of soils over 

different crops.  By using 58 years of data I capture a wide variety of weather years, including 

some that may be very similar to typical years under future climates. 

First, I find that small investments in soil reclamation on the least capable cropped soils 

significantly reduce the likelihood of very low yield outcomes under alternative future climates.  

Second, assuming 2000-2008 average net returns to a bushel of maize and soybeans, marginal 

soil reclamation means an expected extra $45.26 and $26.98 (2000 $) of net returns per acre per 

year on a representative S1 field in maize and soybeans, respectively (not including the private 

amortized costs of marginal soil reclamation).  Given that the net return on the average 

Midwestern maize and soybean acre was $95 and $178 over the 2000-2008 period (2000 $), 

respectively, gains from marginal soil reclamation on the leas capable soils could be substantial.  

Overall I have shown that marginal soil reclamation on the least capable Midwestern soils can 

enhance social welfare under expected climate change assuming reclamation costs are 

reasonable. 

Therefore, the next essential task for economists and agronomists is to identify exactly 

where and what types of reclamation projects (e.g., establishing major drainage facilities, 
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building levees or flood-retarding structures, providing water for irrigation, removing stones, or 

large-scale grading of gullied land, etc.) would most cost-effectively generate capability 

improvements similar to my ‘marginal’ improvements.  Such an analysis will require the creation 

of a map of marginal soil reclamation costs and a more detailed map of potential returns to this 

investment. Ideally, the potential returns map will include the ecosystem service benefits of soil 

reclamation as well, including less soil erosion and better local water quality (Bossio et al. 2010, 

Smith et al. 2012).  Given that soil reclamation also provides a stream of public goods a 

discussion on soil reclamation governance also needs to occur.  To what extent should regulatory 

agencies promulgate soil reclamation incentive polices?  To what extent will reclamation be 

undertaken by private farmers on their own accord?  How much technical information and 

assistance will the regulatory agencies need to provide to promote private reclamation?  

In his latest book, historian George Parker (2013) tells the fascinating story of climate 

change and agricultural practices in 17th century Europe and Asia.  During that century, a vicious 

cycle of extreme weather (the “Little Ice Age”), wars, and disease reduced crop yields across the 

globe and ultimately led to the loss of a third of the world’s population.  Yield depression caused 

by changes in weather, the decrease in supply of farm labor, and ultimately the decline in the 

global demand for food led to global abandonment of marginal cropland; only the most 

productive soils could generate positive economics returns for their owners and sharecroppers by 

the tail end of the 17th century.  In that century abandonment of marginal land was the optimal 

response to climate and societal conditions.  In this century abandonment of marginal cropland 

could lead to a global crisis.  Unlike the 17th century, global population is expected to greatly 

expand this century, by 32% from 2013 to 2050 alone.xi  Given this growing global population 

and the expected yield depression in many parts of the world due to expected climate change, 
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more intensive use of marginal croplands, those still used currently and those recently 

abandoned, will be necessary to avoid the farming of the globe’s remaining natural ecosystems 

and a massive increase in global agriculture’s impact on the environment.   I have shown that we 

can make the more marginal croplands much more productive with marginal investments in soil 

reclamation.  Now a program that strategically identifies the most promising reclamation projects 

needs to be established. 

 My analysis could be improved in several ways.  First, my analysis is based on crop and 

famer reaction to weather in the past.  As the climate evolves Midwestern farmers and crop 

scientists will adapt in various ways.  These adaptations may lead to modified maize and soybean 

varieties that do not react to weather the same way they did from 1950 to 2008.  Or technological 

breakthroughs could lead to completely different trends in yield growth in the future.  A richer 

analysis of potential farmer and the agricultural sector’s reaction to climate change and greater 

demand from a burgeoning global population could improve my research. 

One could also question the preciseness and usefulness of my broad soil capability 

measure. The coarse index of soil capability used here may not be subtle enough to accurately 

capture the impact and meaning of marginal soil reclamation and prove useful in identifying the 

places where marginal reclamation of soil would be most productive.  Further, my study says 

nothing on the impact of improvements in soil quality that do not involve reclamation.  For 

example, Cong et al. (2013) and de Vries et al. (2013) have shown how investments in a field’s 

soil organic carbon stock can be an optimal strategy for a risk adverse farmer under a more 

volatile climate.   Field studies that explore adaptation possibilities to climate change are also 

well-positioned to incorporate other potentially important drivers of agricultural productivity 

such as pest abundance and mix.  The omission of pest abundance and mix in a yield model that 
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is used to analyze future yields could be problematic as discontinuous changes in pest regimes 

are expected under climate change (e.g., Diffenbaugh et al. 2008).   

One could also question the appropriateness of my weather data for modeling past and 

future yields.  For example, Schlenker and Roberts (2009) use hourly temperature data from 

1950 to 2005 to pinpoint the effect of temperature on US maize and soybeans yield (recall I use 

monthly averages).  However, my results are very similar to theirs despite the coarser climate 

data (see Appendix Text R).  Therefore, it does not appear my study was adversely affected by 

the coarser weather data.     

Finally, as I mentioned above, this research would be conducted differently if I had 

cropland maps at the field level back to 1950.   Such maps would allow me to determine exactly 

what soils each crop is grown on and I would not have to rely on the assumption that a county’s 

overall soil profile matches the soil profile used for maize and soybeans in that county.  

Unfortunately, digital maps of cropland at the pixel level for the entire study region have only 

been published since 2007 (http://nassgeodata.gmu.edu/CropScape/).  
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Figure 1: GDDmct and PRECIPmct of the 10 best and worst measures of Ymct for each year t 

across all soil capability classes.  Results are separated by decade.  In each decadal subplot the 

colored (black) dots indicate the ten best (worst) county-level yields observed in a soil class in a 

given year.  Because I use 5 soil classes there are 500 colored dots (100 dots of each color) and 

500 black dots in each subplot (I do not differentiate the worst yields by soil class). The grey box 

in each plot indicates the bounds of the colored dots less the high and low GDDmct outlier for that 

decade.  Counties with any unclassified soil area were not eligible for ranking.  See Appendix 

Text C for a similar soybean figure. 
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Figure 2: Histograms of predicted 2000-2008 average annual county-level maize and 

soybean yields by soil class Sq. The orange circles indicate the mean value of each distribution. 

Counties with any unclassified soil area are not included. 
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Figure 3:  Histograms of predicted 2000-2008 average annual county-level maize and 

soybean yields without and with marginal soil reclamation. The gray bars and orange circles 

represent the distribution and mean, respectively, of county-level average yields without 

marginal soil reclamation (the same distributions as figure 2).  The black bars and green circles 

represent the distribution and mean, respectively, of county-level average yields with marginal 

soil reclamation. Counties with any unclassified soil area are not included. 
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Figure 4: Histograms of predicted 2050-2058 average annual county-level maize and 

soybean yields by soil capability class under two alternative climate scenarios. The “Best” 

climate scenario assumes a 10% increase in GDDmct and GDDsct across the entire study area, no 

change in PRECIPmct and PRECIPsct and an 11 year slowdown in yield trend growth.  The 

“Worst” climate scenario assumes a 20% increase in GDDmct and GDDsct across the entire study 

area, a 10% decrease in PRECIPmct and PRECIPsct across the entire study area, and 18 year 

slowdown in yield trend growth.  The orange circles indicate the mean value of each distribution 

while the blue circles indicate the mean value of the baseline distribution (no climate change and 

no slowdown in yield trend growth). Counties with any unclassified soil area are not included. 

 



 

37 

 

 

Figure 5: Histograms of predicted 2050-2058 average annual county-level maize and 

soybean yields without and with marginal soil reclamation under two alternative climate 

scenarios on soil capability classes 1 and 2.  The gray bars and orange circles represent the 

distribution and mean, respectively, of county-level average yields without marginal soil 

reclamation (the same distributions as figure 4).  The black bars and green circles represent the 

distribution and mean, respectively, of county-level average yields with marginal soil 

reclamation. Counties with any unclassified soil area are not included.  The blue circles indicate 

the mean value of the baseline distribution (no climate change and no slowdown in yield trend 

growth).  See the figure 4 legend for details on the future scenarios.  
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Table 1.  Expected monetary gains in net returns to maize and soybean production with soil 

reclamation under alternative 2050-2058 climates 

 “Best” Climate Scenario “Worst” Climate Scenario 

Sq Maize Soybeans Maize Soybeans 

1 $48.84 $28.31 $41.67 $25.64 

2 $6.99 $5.18 $3.61 $4.74 

Notes. Assumes average net returns to an acre of maize and soybeans over the six state area was 

$0.75 and $3.89 in 2000 $, respectively (equivalent to 2000-2008 average net return to a bushel 

of maize and soybeans over the six state area; USDA-ERS 2013). Does not include private 

amortized costs of marginal soil reclamation.   
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Table 2.  Expected reductions in the probability of low yield outcomes with soil reclamation 

under alternative 2050-2058 climates 

 Maize Soybeans 

Sq 

Yield being below 

220 bushels / acre 

under “Best” 

scenario 

Yield being below 

200 bushels / acre 

under “Worst” 

scenario 

Yield being below 

57 bushels / acre 

under “Best” 

scenario 

Yield being below 

54 bushels / acre 

under “Worst” 

scenario 

1 0.6142 0.5116 0.6661 0.5229 

2 0.2778 0.1729 0.1124 0.0966 

3 0.1142 0.0728 0.0390 0.0218 

 



 

 

Appendix to “Reclaiming soils to sustain maize and soybean productivity in the Midwestern 

US given climate change” 

 

Appendix Text A. Annual county-level growing degree day and growing season precipitation 

data for maize and soybeans 

First, I collected monthly temperature averages and precipitation levels for the years 1950 

through 2008 for each 0.5 degree grid cell in the six state area (CRU 2010).  Then, using a 

gridded map that gives growing season dates for crop j (Sacks et al. 2010), I calculated j’s 

growing degree days (GDDjct) and growing season precipitation (PRECIPjct) in each cell for the 

years 1950 through 2008.  Temperature readings only added to the GDD measure if they were 5 

degrees Celsius or greater and they occurred during the crop’s growing season.  The code to 

convert monthly daytime temperature averages and monthly precipitation amounts to GDD 

and PRECIP comes from Jamie Gerber, Institute of the Environment, University of Minnesota.  A 

county’s time series of growing season weather was set equal to that of the grid cell closest to 

the county’s centroid.  Contact the author for a copy of the MATLAB code that converts 

monthly average temperature data into GDDjct for maize and soybeans.   

 

  



 

 

Appendix Text B. County-level soil capability measures, the creation of soil capability class 

categories, and county membership in classes 

The native USDA-NRCS (2013) capability classification map places all soils in one of eight 

capability classes, known as Land Capability Classifications (LCCs). The risks of soil damage or 

limitations in use become progressively greater from class I to class VIII. Soils in the first four 

classes under good management are capable of producing adapted plants, such as forest trees 

or range plants, and the common cultivated field crops and pasture plants. Soils in classes V, VI, 

and VII are suited to the use of adapted native plants. Some soils in classes V and VI are also 

capable of producing specialized crops, such as certain fruits and ornamentals, and even field 

and vegetable crops under highly intensive management involving elaborate practices for soil 

and water conservation. Soils in class VIII do not return on-site benefits for inputs of 

management for crops, grasses, or trees without major reclamation.  

 

Let Lc be given by, 

 

�� = 4��� + 3��� + 2��� + ��� + 0���      (I) 

 

where Lc1 is the fraction of county c’s area in land capability classes (LCCs) 1 and 2, Lc2 is the 

fraction of county c’s area in LCCs 3 and 4, Lc3 is the fraction of county c’s area in LCCs 5 and 6, 

Lc4 is the fraction of county c’s area in LCCs 7 and 8, and LcU is the fraction of county c’s soil area 

that has not been classified.  The lower the density of highly capable soils in county c, the lower 

its value of Lc.  Appendix Text B Table 1 indicates how Lc values were binned into soil capability 

classes.  Appendix Text B Figure 1 indicates the distribution of Lc scores and the binning of soil 

capability classes.  Appendix Text B Figure 2 indicates the spatial distribution of soil capability 

classes. 

 

Appendix Text B Table 1 

Sq Range in Lc 

1 [0.000, 2.785] 

2 (2.785, 3.218] 

3 (3.218, 3.437] 

4 (3.437, 3.680] 

5 (3.681, 4.000] 

 

 



 

 

 
Appendix Text B Figure 1  

 

 

 

 
Appendix Text B Figure 2 

 

  



 

 

Appendix Text C. Soybean version of Figure 1. 

 

 
 

Appendix Text C Figure 1: GDDsct and PRECIPsct of the 10 best and worst measures of Ysct for 

each year t across all soil capability classes.  Results are separated by decade.  In each subplot 

the dots other than those shaded black indicate the ten best county-level yields observed in a 

soil class in a given year.  In each subplot the black dots indicate the ten worst county-level 

yields observed in each soil class in a given year.  Because I use 5 soil classes there are 500 non-

black dots (100 dots of each color) and 500 black dots in each subplot (I do not differentiate the 

worst yields by soil class). The grey box in each plot indicates the bounds of the colored dots 

less the high and low GDDsct outlier for that decade.  Counties with any unclassified soil area 

were not eligible for ranking and therefore are not represented in the figure above.   

 

  



 

 

Appendix Text D. OLS estimates of the cropping success model (model 1) 

Let the ratio of harvested to planted acres of crop j in county c in year t be given by Rjct where 

Rjct = Ajct / Pjct and Pjct indicates the percentage of county c’s area planted in crop j in year t.  For 

maize Pjct refers to all planted corn, whether it eventually fails, is used for grain, or used for 

silage (recall that Amct just refers to maize for grain harvested area).  A model that explains 

planted area harvest rates for crop j for t = 1950 to 2008 is given by, 

 


���� = ��� + ��������� + �����	
����� +     (II) 

���������� + �����	
������ + �	���(��) + �
����(�����)� + ����    

 

where ��(��) indicates which soil capability class that county c belongs to and Djc(state)t indicates 

state-level farm-gate per bushel price for each year and commodity where c(state) indexes 

what state county c belongs to  and assigns state-level prices to counties accordingly.  I expect 

the rate of cropping success to decrease as GDD and PRECIP fall to very low or high levels 

because extreme weather incidences are likely to drive GDD and PRECIP much lower or higher 

than normal. (Not always, however.  Suppose the first part of the growing season is very cold 

and the second part is abnormally hot.  The composite season GDD could indicate a typical 

year.)   In other words, I hypothesize a statistical estimate of model (II) to generate a “inverted 

U” relationship between each weather variable and cropping success, all else equal (positive 

signs for �� and �� and negative signs for �� and ��).  Further, crops on more capable soils 

should be more resilient to extreme weather that could lead to crop failure. If this is the case, 

estimated �	 should be positive given that increases in ��(��) indicates greater capability.  In 

addition, crop failure rates could also be partly explained by economic data.  If the farm-gate 

price is low enough it may not be cost-effective for a farmer to spend additional resources to 

maintain and harvest a crop that has become stressed.  Therefore, I hypothesize estimated �
 

will be positive, all else equal. (I assume that when a decision on whether or not to invest in a 

distressed crop has to be made the farmer has a fairly good idea of what the farm-gate price for 

the crop will be at harvest time. In other words, while the farm-gate price will have not been 

revealed to the farmer at the time of decision I assume he can make a fairly accurate guess 

given market and weather conditions.)  Finally, failure rates may become less acute over time 

as agricultural technology and farm management has improved; therefore, estimated ���  is 

likely to be positive.  Other than the estimated coefficient on Dmc(state)t (the maize farm-gate 

price), ordinary least squares estimates of model (II) for maize and soybeans from 1950 to 2008 

generate estimated coefficients, all statistically significant at the p = 0.01 level, that conform to 

expectations.  See Appendix Text D Table 1. 

 

Appendix Text D Table 1 

 
Maize Soybeans 

 

Est. 

Coefficients 
Std. Err. 

P-

value 

Est. 

Coefficients 
Std. Err. 

P-

value 

Intercept -341.60*** 10.71 0.00 37.25*** 4.25 0.00 

 ������  0.19*** 2.26E-03 0.00 0.03*** 1.07E-03 0.00 

 ��	
�����  0.06*** 3.37E-03 0.00 0.01*** 1.20E-03 0.00 



 

 

 
Maize Soybeans 

 

Est. 

Coefficients 
Std. Err. 

P-

value 

Est. 

Coefficients 
Std. Err. 

P-

value 

�������  -3.59E-05*** 4.96E-07 0.00 -5.98E-06*** 2.56E-07 0.00 

��	
������  -4.60E-05*** 3.23E-06 0.00 -1.28E-05*** 1.29E-06 0.00 

Soil Class (Sc) 2.94*** 0.05 0.00 0.33*** 0.02 0.00 

Farm gate 

price (����) -0.50*** 0.11 0.00 0.07*** 0.02 0.00 

Year (t) 0.08*** 0.01 0.00 0.01*** 2.10E-03 0.00 

   
   

R2 0.622 
  

0.107   

F value 4808 
  

282   

N 20,433 
  

16,527   

Notes: Asterisk (‘***’) denote variables significant at a 1% level. Counties with any unclassified 

soils were not included in the regression.   

 

  



 

 

Appendix Text E. Historic relationship between yield and soil capability class 

 

Appendix Text E Table 1: Average annual per acre county-level yields from 1950-2008 in each 

soil capability class 

 
Maize Soybeans 

Sq 

Mean 

County-

Level Yield 

Std. 

Dev. 

Coefficient of 

Variation 

Mean 

County-

Level Yield 

Std. 

Dev. 

Coefficient of 

Variation 

1 81.41 32.85 0.40 28.40 9.38 0.33 

2 93.71 36.16 0.39 30.54 9.57 0.31 

3 98.56 37.23 0.38 32.11 9.67 0.30 

4 102.21 38.24 0.37 33.00 9.91 0.30 

5 108.84 38.55 0.35 35.28 9.71 0.28 

Notes: Counties with any unclassified soils were not included in the construction of these 

summary statistics. 

 

  



 

 

Appendix Text F. Creation of omitted land use area variable 

This residual land use category includes all other agricultural uses, including failed maize and 

soybeans acres, and non-agriculture uses such as urban areas, forests, etc.  Land allocation 

statistics are straightforward to calculate at Midwest latitudes because double–cropping does 

not occur.  For example, land used for winter wheat is harvested in the summer and planted 

with a restorative cover crop in the fall; spring wheat is harvested later in the year but 

eventually its land is also covered with alfalfa or something similar.   In other words, there is 

one productive use for each acre of land each year  

 

If maize or soybeans fields in a county in year t failed, the failure was soon enough to be 

planted over, and the second planting is harvested then the omitted land area statistic is given 

approximately by 100 − ���� − �
��� − ����  because of some double-counting.  For example, 

consider the following fictitious county where each grid is 100 acres, ‘M’ means the 100 acres 

grid was harvested for maize, ‘S’ means the 100 acres grid was harvested for soybeans, ‘FM’ 

means the 100 acres was planted with maize but it failed, and all other grids are urban areas 

(see Appendix Text F Figure 1).  If j = maize then ���� = � ���

����
� × 	100 = 6.25, ���� = 0, ����  

equals 18.75, 21.9, or 25 depending on any replanting success, and all other land uses is 75 

(urban plus failed maize).  If there is no replanting success then 100 – 18.75 – 6.25 – 0 = 75% of 

the county’s area is in the residual land use category.  If there is 100 acres that are successfully 

replanted then 100 – 21.9 – 6.25 = 100 – 28.15 = 71.85% of the county’s area is in the residual 

land use category.  

 

 
 

Appendix Text F Figure 1 

 

  



 

 

Appendix Text G. Fixed effects estimate of model (1) 

 

Appendix Text G Table 1: Fixed effects estimate of model (1) for j = maize, –j = soybeans 
 Soil Capability Class Sq 

 1 2 3 4 5 

 
Est. 

Coeff. 
p-value 

Est. 

Coeff. 
p-value 

Est. 

Coeff. 
p-value 

Est. 

Coeff. 
p-value 

Est. 

Coeff. 
p-value 

������  0.14 0.00 0.13 0.00 0.18 0.00 0.23 0.00 0.29 0.00 

���������  0.12 0.00 0.16 0.00 0.16 0.00 0.19 0.00 0.27 0.00 

������
�

 -3.3x10
-5

 0.00 -3.3x10
-5

 0.00 -4.3x10
-5

 0.00 -5.6x10
-5

 0.00 -6.9x10
-5

 0.00 

���������
�

 -1.0x10
-4

 0.00 -1.4x10
-4

 0.00 -1.4x10
-4

 0.00 -1.8x10
-4

 0.00 -2.4x10
-4

 0.00 

T 15.8 0.00 -24.2 0.00 -32.5 0.00 -31.3 0.00 -11.0 0.00 

t
2
 -3.7x10

-3
 0.00 6.5x10

-3
 0.00 8.6x10

-3
 0.00 8.3x10

-3
 0.00 3.2x10

-3
 0.00 

Am 1.85 0.00 1.04 0.00 0.94 0.00 0.99 0.00 0.96 0.00 

As 1.96 0.00 0.36 0.00 0.41 0.00 0.23 0.00 0.08 0.13 

Aw -1.62 0.00 -0.05 0.71 -0.08 0.35 -0.17 0.01 0.27 0.00 

Con. -17090 0.00 22305 0.00 30493 0.00 29207 0.00 8881 0.02 

           

N 4927  5622  5708  5827  5782  

R
2
           

within  0.77  0.80  0.81  0.83  0.84  

between  0.73  0.54  0.59  0.56  0.21  

overall  0.73  0.75  0.78  0.79  0.80  

Note: STATA uses an estimated constant coefficient that averages the constant and fixed effect 

coefficients; see http://www.stata.com/support/faqs/stat/xtreg2.html. 

 

Appendix Text G Table 2: Fixed effects estimate of model (1) for –j = maize, j = soybeans 
 Soil capability class 

 1 2 3 4 5 

 
Est. 

Coeff. 
p-value 

Est. 

Coeff. 
p-value 

Est. 

Coeff. 
p-value 

Est. 

Coeff. 
p-value 

Est. 

Coeff. 
p-value 

������  0.06 0.00 0.08 0.00 0.09 0.00 0.09 0.00 0.09 0.00 

���������  0.05 0.00 0.05 0.00 0.05 0.00 0.07 0.00 0.09 0.00 

������
�

 -1.5x10
-5

 0.00 -1.8x10
-5

 0.00 -2.0x10
-5

 0.00 -2.1x10
-5

 0.00 -2.1x10
-5

 0.00 

���������
�

 -4.2x10
-5

 0.00 -4.9x10
-5

 0.00 -5.0x10
-5

 0.00 -6.6x10
-5

 0.00 -8.6x10
-5

 0.00 

t 2.63 0.04 -3.86 0.00 -3.91 0.00 -2.79 0.00 -2.76 0.01 

t
2
 -5.6x10

-4
 0.09 1.1x10

-3
 0.00 1.1x10

-3
 0.00 8.0x10

-4
 0.00 8.0x10

-4
 0.00 

Am 0.54 0.00 0.25 0.00 0.25 0.00 0.21 0.00 0.23 0.00 

As 0.16 0.00 2.1x10
-3

 0.92 0.02 0.12 0.04 0.01 0.02 0.11 

Aw -0.54 0.00 -0.12 0.00 0.02 0.41 0.02 0.40 0.09 0.00 

Con. -3053 0.02 3356 0.00 3409 0.00 2294 0.01 2247 0.03 

           

N 3368  5581  5706  5810  5782  

R
2
           

within  0.71  0.75  0.77  0.78  0.78  

between  0.66  0.67  0.82  0.77  0.67  

overall  0.68  0.73  0.78  0.77  0.77  

Note: STATA uses an estimated constant coefficient that averages the constant and fixed effect 

coefficients; see http://www.stata.com/support/faqs/stat/xtreg2.html. 



 

 

Appendix Text H. Trend yield growth 

 

 
 

Appendix Text H Figure 1:  Predicted trend yield growth for both crops in each soil class 

category.  A plot point for Sq on graph j is estimated by calculating ������ + ������� − �����(� −
1) − �����(� − 1)� and then plotting this y-axis value at the x-value of t.  

 

 

  



 

 

Appendix Text I. Predicted and observed average annual county level yields for 2000-2008 

across all 5 soil capability classes  

Let 
�� = �∑ 
�������
������ � 9⁄  be the predicted average annual county-level 2000-2008 per acre 

yield of crop j in county c where,  

 


��� = ����� + ������ + ������ + ����������� + ������������ + ��	����	
�����  (III) 

+��
����	
������ + ��������� + ������
��� + ���������    

 

�����  indicates the average constant coefficient for Sq, and the ����� indicates the estimated 

coefficient for crop j in soil class q in county c that is a member of set Sq. (STATA uses an 

estimated constant coefficient, in this case �����, that averages the constant and fixed effect 

coefficients; see http://www.stata.com/support/faqs/stat/xtreg2.html.)  

 

See figure 2 for the distribution of 
��  (predicted average annual yield of crop j in county c from 

2000-2008) values for all {Sq; j} combinations.  The means of these distributions, represented by 


��  and  
��  for each Sq, are given in Appendix Text I Table 1. 

 

Finally, let ∑ ��������
������ 9⁄  indicate the observed average annual per acre yield of crop j in 

county c from 2000-2008 and ���  the mean of the distribution across all c in the same soil class 

category, 

 

��� =
∑ ∑ �����∈	�


���

�×�(�)
         (IV) 

 

Appendix Text Table 1: Predicted and observed average annual yields from 2000-2008 

Sq 1 2 3 4 5 

 Predicted Average Yields 

 Est. SD Est. SD Est. SD Est. SD Est. SD 


��  120.1 20.14 136.0 17.07 144.1 15.27 149.5 15.72 157.1 11.69 


��  38.8 5.11 40.9 4.09 42.9 4.05 44.02 3.64 46.9 2.83 

 Observed Average Yields 

���  121.1 28.91 138.7 25.98 146.5 24.03 151.0 24.70 158.6 21.36 

���  38.2 9.01 40.5 7.69 42.4 7.86 43.2 7.77 46.3 6.97 

 

 

  



 

 

Appendix Text K. The potential to strategically use the best soils for cropping in soil class 1 

counties 

As of 2001, there were more than 5.6 million private acres in LCCs I and II in the counties that 

form soil capability class 1 that were not in cropland but could be (Appendix Table 7).  Land 

available for cropland includes protected land formally cropped, protected and unprotected 

pasture, protected and unprotected forest, and protected and unprotected shrub, scrub, and 

grasslands.  Given the average number of acres used annually for maize, soybean, and wheat 

harvest from 2000 to 2008 in soil capability class 1 counties (Appendix Table 8), there are more 

than enough uncropped LCC I and II soils in class 1 counties to place all contemporaneous 

maize, soybean, and wheat production on these most productive soils without crowding out 

other highly productive land uses.  And when you consider some LCC I and II soils are already 

used for cropping in soil capability class 1 counties, the capacity to “fit” all crop production in 

the lowest capability class counties on the most capable soils becomes even easier. 

 

Appendix Table 7: Private acres available for cropping as of 2001 across the six Midwest 

states by soil class category and LCCs 

Sq LCCs 1 and 2 LCCs 3 and 4 LCCs 5 and 6 LCCs 7 and 8 

1 5,694,621 12,974,740 5,634,577 5,183,282 

2 4,429,804 6,405,063 2,025,908 1,371,544 

3 3,663,384 3,909,285 949,454 508,868 

4 3,142,765 2,027,267 566,812 298,824 

5 1,915,098 639,612 171,992 114,516 

Note: Data comes from Radeloff et al. (2012) 

    

Appendix Table 8: Average number of acres used annually for harvest from 2000 to 2008 

across the six Midwest states by soil class category 

Sq Maize Soybeans Wheat Three Crop Total 

1 1,314,666 885,613 120,113 2,320,392 

2 5,575,536 5,201,073 583,584 11,360,193 

3 8,295,655 8,165,158 1,114,306 17,575,119 

4 10,089,931 9,804,525 1,411,379 21,305,835 

5 12,843,674 11,809,598 723,452 25,376,724 

Note: Data comes from USDA-NASS (2012). 

 

 

  



 

 

Appendix Text L. Effect of marginal reclamation of cropped soils on predicted 2000 – 2008 

yields 

See figure 3 for the distribution of 
���  (predicted annual average yield of crop j in county c from 

2000 to 2008 given marginal soil reclamation) across all c in a soil capability class for each {Sq; j} 

combination.  The means of these distributions are given in Appendix Text L Table 1.  These 

means are also plotted in figure 3. 

 

Appendix Text L Table 1: Predicted average annual yields (bu / acre) from 2000 through 2008 

with marginal soil improvement 

Improvement q = 1 to q = 2 q = 2 to q = 3 q = 3 to q = 4 q = 4 to q = 5 

 Est. SD Est. SD Est. SD Est. SD 

Mean of 
���  across all  ∈ !� 140.4 7.60 141.8 13.06 145.6 12.06 155.2 10.72 

Mean of 
���  across all  ∈ !� 40.0 3.21 42.5 2.69 43.7 2.35 46.3 2.31 

 

In Appendix Text L Table 2 I give the density of the histograms in figure 3 that are at a target 

yield level or below.  For example, to keep annual net revenues (before any reclamation costs) 

from a soybean acre from falling below $160 during 2000-2008, Midwestern farmers had to 

produce, on average, 39 bushels per acre per year (USDA-ERS 2013).  Marginal reclamation 

would have reduced the probability of the representative acre’s average annual yield from 

2000-2008 falling below 39 bushels per acre by 32%, 20%, 9%, and 8% for S1, S2, S3, and S4 

counties, respectively. 

 

Appendix Text L Table 2 

 

Probability of 2000-2008 annual county-

level average maize yield being below 140 

bushels / acre 

Probability of 2000-2008 annual county-

level average maize yield being below 39 

bushels / acre 

Sq 
Before 

reclamation 

After 

reclamation 
Difference 

Before 

reclamation 

After 

reclamation 
Difference 

1 0.8558 0.4399 0.4159 0.6502 0.3333 0.3169 

2 0.5986 0.3356 0.263 0.2981 0.0949 0.2032 

3 0.3970 0.2532 0.1438 0.1489 0.0550 0.0939 

4 0.2503 0.0875 0.1628 0.0912 0.0123 0.0789 

  



 

 

Appendix Text M. Past Climate Change 

Let �����  indicate the average annual GDD from 1950-1958 across counties in soil class q 

during j’s growing season.    
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Let ������ indicate the average annual GDD from 2000-2008 across counties in soil class q 

during j’s growing season.    
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I calculate ��	
����  and ��	
����� in the same manner.  All of these weather means (and 

mean standard deviations) are presented in Appendix Text M Table 1 and relative change 

between the means is presented in Appendix Text M Table 2. 

 

Appendix Text M Table 1: Mean GDD and PRECIP in 1950-1958 and 2000-2008 

 ������ ������ ��������� ��������� ������ ������ ��������� ��������� 

1 2084 2178 450 499 2108 2052 410 436 

Std. Dev. 389 315 99 107 269 259 102 99 

2 2404 2427 464 517 2175 2196 403 440 

Std. Dev. 342 329 114 111 290 276 104 98 

3 2387 2391 450 512 2165 2167 391 437 

Std. Dev. 308 282 113 108 267 241 103 96 

4 2272 2292 444 503 2066 2082 387 431 

Std. Dev. 270 245 107 103 231 210 97 93 

5 2281 2301 460 521 2071 2092 403 448 

Std. Dev. 213 189 110 101 188 164 101 90 

 

Appendix Text M Table 2: Percentage change in mean GDD and PRECIP between the periods 

1950-1958 and 2000-2008 by crop and soil capability class 

 Maize Soybeans 

Sq 
GDD 

�%∆"###$� 

Precipitation 

�%∆$%&'($#$� 

GDD 

�%∆"##%$� 

Precipitation 

�%∆$%&'($%$� 

1 4.5% 10.7% -2.7% 6.4% 

2 1.0% 11.5% 0.9% 9.1% 

3 0.2% 14.0% 0.1% 11.7% 

4 0.9% 13.2% 0.8% 11.2% 

5 0.9% 13.2% 1.0% 11.4% 

  



 

 

Appendix Text N. Maps of expected climate change 

 

A 

 

B 

 
C 

 

D 

 
 

Appendix Text N Figure 1: Historic and expected changes in summer temperatures and 

precipitation over the Midwest.  Maps produced by ClimateWizard © University of Washington 

and The Nature Conservancy, 2009.  Base climate projections downscaled by Maurer et al. 

(2007)   

 
  



 

 

Appendix Text O. The density of the histograms in figure 5 that are at a target yield level or 

below. 

 

Appendix Text O Table 1 refers to results under the “Worst” climate change. 

 

Appendix Text O Table 1: Probability of 2050-2058 annual average county-level yield falling 

being below a given yield under the “Worst” climate change scenario 

 

Probability of 2050-2058 annual county-

level average maize yield being below 

200 bushels / acre 

Probability of 2000-2008 annual county-

level average soybean yield being below 54 

bushels / acre 

Sq 
Before 

reclamation 

After 

reclamation 
Difference 

Before 

reclamation 

After 

reclamation 
Difference 

1 0.987 0.4754 0.5116 0.8539 0.3310 0.5229 

2 0.7817 0.6088 0.1729 0.6232 0.5266 0.0966 

3 0.6421 0.5693 0.0728 0.5430 0.5212 0.0218 

 

Appendix Text O Table 2 refers to results under the “Best” climate change. 

 

Appendix Text O Table 2: Probability of 2050-2058 annual average county-level yield falling 

being below a given yield under the “Best” climate change scenario 

 

Probability of 2050-2058 annual county-

level average maize yield being below 

220 bushels / acre 

Probability of 2000-2008 annual county-

level average maize yield being below 57 

bushels / acre 

Sq 
Before 

reclamation 

After 

reclamation 
Difference 

Before 

reclamation 

After 

reclamation 
Difference 

1 0.9968 0.3826 0.6142 0.8333 0.1672 0.6661 

2 0.6667 0.3889 0.2778 0.3404 0.228 0.1124 

3 0.4384 0.3242 0.1142 0.2234 0.1844 0.039 

 

 

  



 

 

Appendix Text P. Boot-strapped estimates of model (1) 

 

In this analysis I have to drop time and its square from the model because it is “absorbed” by 

the model used to conduct the group bootstrapping analysis (time is the absorbed variable in 

STATA’s areg command). 

 

Appendix Text P Table 1: Estimated bootstrap p-values of model (1) for j = maize, –j = 

soybeans 

 Soil Capability Class Sq 

 1 2 3 4 5 

������  0.005 0.010 0.001 0.001 0.009 

��	
�����  0.001 0.000 0.000 0.001 0.000 

�������  0.006 0.003 0.000 0.000 0.003 

��	
������  0.003 0.000 0.000 0.003 0.000 

Am 0.000 0.000 0.000 0.000 0.000 

As 0.000 0.003 0.000 0.001 0.001 

Aw 0.095 0.031 0.096 0.968 0.030 

Constant 0.012 0.160 0.032 0.021 0.051 

 

 

Appendix Text P Table 2: Estimated bootstrap p-values of model (1) for j = soybeans, –j = 

maize 

 Soil Capability Class Sq 

 1 2 3 4 5 

������  0.004 0.000 0.000 0.000 0.001 

��	
�����  0.002 0.000 0.000 0.000 0.000 

�������  0.004 0.000 0.000 0.000 0.000 

��	
������  0.011 0.000 0.000 0.000 0.000 

Am 0.000 0.000 0.000 0.000 0.000 

As 0.021 0.518 0.118 0.120 0.013 

Aw 0.029 0.440 0.098 0.478 0.035 

Constant 0.077 0.000 0.000 0.000 0.010 

 

  



 

 

Appendix Text Q. Chow Test results 

See Appendix Text Q Figure 1 for the distribution of 
��  (predicted annual average yield of crop j 

in county c from 2000-2008) for each j and q combination only using the counties not dropped 

from j’s dataset due to the Chow test.   

 

 

 
 

Appendix Text Q Figure 1: Histograms of predicted 2000-2008 average annual county-level 

maize and soybean yields by soil class using the counties not dropped from j’s dataset due to 

the Chow test.  The black bars represent the distribution of county-level average yields with all 

counties (the same distributions as figure 2).  The red bars represent the distribution of county-

level average yields only using the counties not dropped from j’s dataset due to the Chow test. 

Counties with any unclassified soil area are not included.  The means of these distributions are 

given in Appendix Text Q Table 1. 

 

Appendix Text Q Table 1: Predicted and observed average annual yields from 2000-2008 

Sq 1 2 3 4 5 

 Predicted Average Yields with All Counties 

 Est. SD Est. SD Est. SD Est. SD Est. SD 


��  120.1 20.14 136.0 17.07 144.1 15.27 149.5 15.72 157.1 11.69 


��  38.8 5.11 40.9 4.09 42.9 4.05 44.02 3.64 46.9 2.83 

 Predicted Average Yields with Retained Counties 


��  119.0 16.23 132.9 15.98 142.0 13.72 148.6 12.02 156.3 10.87 


��  39.4 5.12 40.9 3.79 42.9 3.92 43.9 3.64 47.0 2.61 

 

  



 

 

Appendix Text R. Comparison of my results to Schlenker and Roberts (2009) 

Depending on soil capability class and modeled future, I project an 8% to 28% decline in mean 

maize yields and a 7% to 23% decline in mean soybean yields compared to ‘no change’ means 

by midcentury.  The counties with the most marginal soils experience the lowest relative 

impacts from expected climate change simply because yield trend growth in these areas is 

already weak. The largest declines I find are in the counties with the best soil capabilities and, 

not coincidently, the most cropped areas.  Therefore, if I found one average 2050-2058 yield for 

each crop across the entire six state area by weighting expected yields by expected crop area I 

would generate expected yield declines much closer to the 28% and 23% endpoints than the 8% 

and 7% endpoints.  Interestingly this means my overall results are very similar to those found 

by Schlenker and Roberts (2009), who estimated mid-century Eastern US average maize and 

soybean yields using much more detailed weather data than this research.  They forecast a 20 

to 30% decline in annual US maize yield and a 15% to 22% decline in annual US soybean yield by 

midcentury compared to yields under no change. 



 

 

 
                                                           
i The other Midwestern states are Kansas, Missouri, Nebraska, North Dakota, South Dakota, and Wisconsin 
ii
 For example, the states that are included in my study generated 67% and 67% of the region’s maize for grain and 

soybeans in 2007. 
iii
 While soil structure likely explains much of soil capability class’ yield impact, I suspect that farmer investment 

behavior in reaction to soil capability helps explain the predicted distributions as well.  It stands to reason that 
farmers would more intensively manage crops on more capable soils because of an expected higher rate of return on 
production investment and lower risks of very low yield or outright crop failure (recall that I found that areas with 
more capable soils have a lower crop failure rate, all else equal).  Therefore, if greater yields on more capable soils 
are partly explained by more intensive management practices then cropping on more capable soils generate two 
types of benefits for society.  The first benefit is more capable soil’s innate capacity to produce better yields, all else 
equal.  The second benefit comes from more capable soil’s ability to cajole risk adverse farmers into investing more 
time and expense into crop production. 
iv Another pathway for better use of Midwestern soil resources is to reallocate maize and soybean production from 
the most marginal soils to the most capable soils.  As of 2001 the six modeled states had 18.85 million acres of the 
most capable soils (LCCs I and II) that were not in cropland but reasonably could have been (see Appendix Text K).  
By reasonably available I mean that land in question, including protected cropped land, protected and unprotected 
pasture, protected and unprotected forest, and protected and unprotected range, presumably could have been 
prepared for cropping at a reasonable cost. However, such widespread transformation of the best soils currently in 
alternative uses would generate extensive environmental destruction.  Here I am interested in proposing solutions to 
21st century agriculture problems that will not involve substantial sod busting and clearing a multitude of tree stands. 
v Of course soil reclamation may have led farmers to change the relative allocation of crops across the Midwest from 
2000-2008 and the representative acre from class Sq would then be different than the observed allocation.   
vi Recall that I also found that marginal reclamation has also been associated with reductions in the risk of crop 
failure; the ultimate bad outcome. 
vii Again, maize and soybean crop production could use it soil resources more intensively in the future by shifting 
marginal crop production to the best soils.  However, given society’s other desires for scarce land (urban and 
transportation uses; forests for aesthetic and recreation purposes, as a sink for carbon, and habitat for animals; 
pasture for livestock, etc.) it seems reasonable to assume that the location of cropped lands will not change 
drastically over the next 50 years. In fact, a recent analysis by Lawler et al. (2013) suggests that if commodity prices 
from the late 2000s continue into the future additional cropland will be added to Midwestern landscape primarily in 
the counties with the least capable soils.         
viii  Mr. Dobos continues, “There are a couple of “reclamation” projects I can think of.  First, I know that in 
California, some hardpan soils are ripped with huge subsoilers and pans are broken to allow root and water 
penetration.  The additional plant available water could change a soil from [LCC] 4 to [LCC] 2 in some situations, 
but I do not have any data for that.  Another “reclamation” project might be good, old fashioned artificial 
drainage.  This can easily move a soil from [LCC 4 to LCC 2], like the Drummer or Muscatine soils of the 
Midwest.  The project would need to be extensive enough to be recognized as a significant management practice in 
the soil survey report.” 
ix Of course I cannot rule out other omitted reasons for a structural shift compared to its cohort such as a county’s 
unique adoption of a specific crop management technique, a specific cultivar, etc.   
x  For example, consider S3.  Some of its members may have actually been in S2 in the 1950s and 1960s and then 
marginal reclamation bumped them up by the time the soil map was made beginning in the 1980s.  All else equal 
these counties will bias �	���(�)� downward in the earlier years.  However, the soil capability in a county can decline 
over time as well.  Therefore, some of S3’s members may have actually been in S4 in the 1950s and 1960s and then 
degradation dropped them down by the time the soil map was made beginning in the 1980s.  All else equal, these 
counties will bias �	���(�)� upward in the earlier years.  These countervailing biases could help keep �	���(�)�

 rather 
insensitive to soil capability changes over time.  
xi Global population in 2013 is 7,095,218,000. Population by 2050 is expected to be 9,383,148,000 for a growth rate 
of 32%.  See http://www.census.gov/population/international/data/idb/informationGateway.php  


