Just a big misunderstanding?
Evidence on bias and partyism

Daniel F. Stone
Bowdoin College

Behavioral Models of Politics Conference (Pitt)
May 13-14, 2016
The latest on polarization in American politics
The latest on polarization in American politics

Figure: Ideology/demographic-adjusted changes (vs 1980) in party favorability ratings (ANES)
The latest on polarization in American politics

Figure: Ideology/demographic-adjusted changes (vs 1980) in party favorability ratings (ANES)

- Polarization of politician actions: very real
Figure: Ideology/demographic-adjusted changes (vs 1980) in party favorability ratings (ANES)

- Polarization of politician actions: very real
- Polarization of citizen ideologies: unclear
The latest on polarization in American politics

Figure: Ideology/demographic-adjusted changes (vs 1980) in party favorability ratings (ANES)

- Polarization of politician actions: very real
- Polarization of citizen ideologies: unclear
- Polarization of citizen feelings about political parties: very real
The latest on polarization in American politics

Figure: Ideology/demographic-adjusted changes (vs 1980) in party favorability ratings (ANES)

- Polarization of politician actions: very real
- Polarization of citizen ideologies: unclear
- Polarization of citizen feelings about political parties: very real
- ‘Affective polarization’/‘partyism’, could exacerbate gridlock, etc
Why so much hate?
Why so much hate?

- Literature: growth in “social distance”
Why so much hate?

- Literature: growth in “social distance”
- Real (aforementioned gridlock)
Why so much hate?

- Literature: growth in “social distance”
- Real (aforementioned gridlock)
- Perceived (Ahler, JoP, 2014; Mason, APSR, 2015)
But why does distance cause dislike?
But why does distance cause dislike?

- Emotional black box?
But why does distance cause dislike?

- Emotional black box?
- But when we hate the out-party, we don’t just ‘feel’, we also *think*...
But why does distance cause dislike?

- Emotional black box?
- But when we hate the out-party, we don’t just ‘feel’, we also *think*...
- that they’re ‘bad guys’ (e.g. Graham et al PLoS One, 2012)
But why does distance cause dislike?

- Emotional black box?
- But when we hate the out-party, we don’t just ‘feel’, we also *think*...
- that they’re ‘bad guys’ (e.g. Graham et al PLoS One, 2012)
- I.e., we hold beliefs about in-party valence superiority
But why does distance cause dislike?

- Emotional black box?
- But when we hate the out-party, we don’t just ‘feel’, we also think...
- that they’re ‘bad guys’ (e.g. Graham et al PLoS One, 2012)
- I.e., we hold beliefs about in-party valence superiority
- And we can’t all be right
But why does distance cause dislike?

- Emotional black box?
- But when we hate the out-party, we don’t just ‘feel’, we also *think*...
- that they’re ‘bad guys’ (e.g. Graham et al PLoS One, 2012)
- I.e., we hold beliefs about in-party valence superiority
- And we can’t all be right
- I.e., our beliefs about out-party valence/‘goodness’ likely biased
But why does distance cause dislike?

- Emotional black box?
- But when we hate the out-party, we don’t just ‘feel’, we also *think*...
- that they’re ‘bad guys’ (e.g. Graham et al PLoS One, 2012)
- I.e., we hold beliefs about in-party valence superiority
- And we can’t all be right
- I.e., our beliefs about out-party valence/‘goodness’ likely biased

- So affective polarization not just ‘affective’ but also cognitive
But why does distance cause dislike?

- Emotional black box?
- But when we hate the out-party, we don’t just ‘feel’, we also *think*...
- that they’re ‘bad guys’ (e.g. Graham et al PLoS One, 2012)
- I.e., we hold beliefs about in-party valence superiority
- And we can’t all be right
- I.e., our beliefs about out-party valence/‘goodness’ likely biased

- So affective polarization not just ‘affective’ but also cognitive
- And likely involves cog bias (both motivated and unmotivated)
But why does distance cause dislike?

- Emotional black box?
- But when we hate the out-party, we don’t just ‘feel’, we also *think*...
- that they’re ‘bad guys’ (e.g. Graham et al PLoS One, 2012)
- I.e., we hold beliefs about in-party valence superiority
- And we can’t all be right
- I.e., our beliefs about out-party valence/‘goodness’ likely biased

- So affective polarization not just ‘affective’ but also cognitive
- And likely involves cog bias (both motivated and unmotivated)
- Obvious?
But why does distance cause dislike?

- Emotional black box?
- But when we hate the out-party, we don’t just ‘feel’, we also *think*...
- that they’re ‘bad guys’ (e.g. Graham et al PLoS One, 2012)
- I.e., we hold beliefs about in-party valence superiority
- And we can’t all be right
- I.e., our beliefs about out-party valence/‘goodness’ likely biased

- So affective polarization not just ‘affective’ but also cognitive
- And likely involves cog bias (both motivated and unmotivated)
- Obvious?
- Not something this (poli sci) or psych (political/moral) literatures talk about
This paper:

Empirical analysis of (unmotivated) bias and out-party dislike

Specific bias: overprecision = 'overconfidence in knowledge' = OC

Twain (and others?): "It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so."

Goal: enhance understanding of causes of partyism (and eventual 'solutions'?)
This paper:

- Empirical analysis of (unmotivated) bias and out-party dislike
This paper:

- Empirical analysis of (unmotivated) bias and out-party dislike
- Specific bias: overprecision \equiv ‘overconfidence in knowledge’ $\equiv OC$
Empirical analysis of (unmotivated) bias and out-party dislike

Specific bias: overprecision = ‘overconfidence in knowledge’ = OC

Twain (and others?): “It ain’t what you don’t know that gets you into trouble. It’s what you know for sure that just ain’t so.”
This paper:

- Empirical analysis of (unmotivated) bias and out-party dislike
- Specific bias: overprecision = ‘overconfidence in knowledge’ = \textit{OC}
- Twain (and others?): “It ain’t what you don’t know that gets you into trouble. It’s what you know for sure that just ain’t so.”
- Goal: enhance understanding of causes of partyism (and eventual ‘solutions’?)
Theory

▶ OC makes us 'believe what we think' more than we should
▶ And we tend to think bad things about our party. Why?
▶ Skewed exposure to negative info (news media, social media/networks)
▶ Negativity bias
▶ Misunderstanding of political-moral values (Haidt, Stone 2016)
▶ Misunderstanding of strategic behavior (Stone 16)

▶ H1: \(\text{OC} \rightarrow \text{relative out-party dislike} \) (holding fixed ideology, partisanship, demographics, etc)
Theory

- OC makes us ‘believe what we think’ more than we should
Theory

- *OC* makes us ‘believe what we think’ more than we should
- And we tend to think bad things about out-party. Why?
Theory

- *OC* makes us ‘believe what we think’ more than we should
- And we tend to think bad things about out-party. Why?
- Skewed exposure to negative info (news media, social media/networks)
Theory

- *OC* makes us ‘believe what we think’ more than we should
- And we tend to think bad things about out-party. Why?
- Skewed exposure to negative info (news media, social media/networks)
- Negativity bias
Theory

- OC makes us ‘believe what we think’ more than we should
- And we tend to think bad things about out-party. Why?
- Skewed exposure to negative info (news media, social media/networks)
- Negativity bias
- Misunderstanding of political-moral values (Haidt, Stone 2016)
Theory

- *OC* makes us ‘believe what we think’ more than we should
- And we tend to think bad things about out-party. Why?
- Skewed exposure to negative info (news media, social media/networks)
- Negativity bias
- Misunderstanding of political-moral values (Haidt, Stone 2016)
- Misunderstanding of strategic behavior (Stone 16)
Theory

- *OC* makes us ‘believe what we think’ more than we should
- And we tend to think bad things about out-party. Why?
- Skewed exposure to negative info (news media, social media/networks)
- Negativity bias
- Misunderstanding of political-moral values (Haidt, Stone 2016)
- Misunderstanding of strategic behavior (Stone 16)

- H1: ↑ *OC* → ↑ relative out-party dislike (holding fixed ideology, partisanship, demographics, etc)
Theory ctd

Ortoleva and Snowberg (AER, 2015) and others: OC causes extremism

Extremism increases distance

H2: \(\uparrow \) OC \(\rightarrow \) \(\uparrow \) extremism \(\rightarrow \) \(\uparrow \) out-party dislike (holding fixed demographics, etc)

Also look at how H1, H2 vary by observables (party and others)

Alternative explanations:

'non-cognitive' social distance

Motivated reasoning/response bias

Bad actions (but can't be case for *both* parties)
Theory ctd

Ortoleva and Snowberg (AER, 2015) and others: OC causes extremism

Alternative explanations:
- ‘non-cognitive’ social distance
- Motivated reasoning/response bias
- Bad actions (but can’t be case for *both* parties)
Theory ctd

- Ortoleva and Snowberg (AER, 2015) and others: OC causes extremism
- Extremism increases distance

Alternative explanations:
- 'Non-cognitive' social distance
- Motivated reasoning/response bias
- Bad actions (but can't be case for both parties)
Ortoleva and Snowberg (AER, 2015) and others: OC causes extremism
Extremism increases distance

H2: ↑ OC → ↑ extremism → ↑ out-party dislike (holding fixed demographics, etc)
Theory ctd

- Ortoleva and Snowberg (AER, 2015) and others: OC causes extremism
- Extremism increases distance

- H2: ↑ OC → ↑ extremism → ↑ out-party dislike (holding fixed demographics, etc)
- Also look at how H1, H2 vary by observables (party and others)
Theory ctd

- Ortoleva and Snowberg (AER, 2015) and others: OC causes extremism
- Extremism increases distance

- H2: \(OC \rightarrow \uparrow \) extremism \(\rightarrow \uparrow \) out-party dislike (holding fixed demographics, etc)
- Also look at how H1, H2 vary by observables (party and others)

- Alternative explanations:
Theory ctd

- Ortoleva and Snowberg (AER, 2015) and others: OC causes extremism
- Extremism increases distance

- \(H2: \uparrow OC \rightarrow \uparrow \text{extremism} \rightarrow \uparrow \text{out-party dislike} \) (holding fixed demographics, etc)
- Also look at how H1, H2 vary by observables (party and others)

- Alternative explanations:
 - ‘non-cognitive’ social distance
Theory ctd

- Ortoleva and Snowberg (AER, 2015) and others: OC causes extremism
- Extremism increases distance

- H2: \(\uparrow OC \rightarrow \uparrow \text{extremism} \rightarrow \uparrow \text{out-party dislike} \) (holding fixed demographics, etc)
- Also look at how H1, H2 vary by observables (party and others)

- Alternative explanations:
- ‘non-cognitive’ social distance
- Motivated reasoning/response bias
Theory ctd

- Ortoleva and Snowberg (AER, 2015) and others: OC causes extremism
- Extremism increases distance

- H2: \(\uparrow OC \rightarrow \uparrow \text{extremism} \rightarrow \uparrow \text{out-party dislike (holding fixed demographics, etc)} \)
- Also look at how H1, H2 vary by observables (party and others)

- Alternative explanations:
 - ‘non-cognitive’ social distance
 - Motivated reasoning/response bias
 - Bad actions (but can’t be case for *both* parties)
The data

From Ortoleva and Snowberg: CalTech module of 2011 CCES

(N=1000)

Standard political, demographic questions

8 q's with factual answers with corresponding q's on confidence

4 on general knowledge (e.g., what's the population of Spain?)

4 on economics/news (what's the unemployment rate?)
The data

- From Ortoleva and Snowberg: CalTech module of 2011 CCES (N=1000)
The data

- From Ortoleva and Snowberg: CalTech module of 2011 CCES (N=1000)
- Standard political, demographic questions
The data

- From Ortoleva and Snowberg: CalTech module of 2011 CCES (N=1000)
- Standard political, demographic questions
- 8 q’s with factual answers with corresponding q’s on confidence
The data

- From Ortoleva and Snowberg: CalTech module of 2011 CCES (N=1000)
- Standard political, demographic questions
- 8 q’s with factual answers with corresponding q’s on confidence
- 4 on general knowledge (e.g., what’s the population of Spain?)
The data

- From Ortoleva and Snowberg: CalTech module of 2011 CCES (N=1000)
- Standard political, demographic questions
- 8 q’s with factual answers with corresponding q’s on confidence
- 4 on general knowledge (e.g., what’s the population of Spain?)
- 4 on economics/news (what’s the unemployment rate?)
Measuring overconfidence

Ortoleva and Snowberg: "Subtracting knowledge from confidence leaves overconfidence"

Measure \(\text{OC} \) with residual from regressions of confidence on 4th order knowledge polynomial

Very highly correlated with confidence (not as much an issue for their analysis)

I propose new (simple) measure of \(\text{OC} \):

\[
\text{C}_i = \text{confidence for respondent } i \text{ on topic } t \text{ normalized to 0-1}
\]

\[
\text{K}_i = \text{knowledge for respondent } i \text{ on topic } t \text{ normalized to 0-1}
\]

\[
\text{OC}_i = \text{C}_i - \text{K}_i \text{ for respondent } i \text{ on topic } t
\]

Use PCA across topics to get \(\text{OC}_i \); two types of top-coding, \(\text{OC}_1, \text{OC}_2 \); validation (still implicit assumptions, necessary given data)
Measuring overconfidence

- Ortoleva and Snowberg: “Subtracting knowledge from confidence leaves overconfidence”
Measuring overconfidence

- Ortoleva and Snowberg: “Subtracting knowledge from confidence leaves overconfidence”
- Measure OC with residual from regressions of confidence on 4th order knowledge polynomial
Measuring overconfidence

- Ortoleva and Snowberg: “Subtracting knowledge from confidence leaves overconfidence”
- Measure OC with residual from regressions of confidence on 4th order knowledge polynomial
- Very high correlated with confidence (not as much an issue for their analysis)
Measuring overconfidence

- Ortoleva and Snowberg: “Subtracting knowledge from confidence leaves overconfidence”
- Measure OC with residual from regressions of confidence on 4th order knowledge polynomial
- Very high correlated with confidence (not as much an issue for their analysis)
- I propose new (simple) measure of OC:
Measuring overconfidence

- Ortoleva and Snowberg: “Subtracting knowledge from confidence leaves overconfidence”
- Measure \(OC \) with residual from regressions of confidence on 4th order knowledge polynomial
- Very high correlated with confidence (not as much an issue for their analysis)
- I propose new (simple) measure of \(OC \):
- \(C_{it} = \) confidence for respondent \(i \) on topic \(t \) normalized to 0-1
Measuring overconfidence

- Ortoleva and Snowberg: “Subtracting knowledge from confidence leaves overconfidence”
- Measure OC with residual from regressions of confidence on 4th order knowledge polynomial
- Very high correlated with confidence (not as much an issue for their analysis)
- I propose new (simple) measure of OC:
 - $C_{it} =$ confidence for respondent i on topic t normalized to 0-1
 - $K_{it} =$ knowledge for respondent i on topic t normalized to 0-1
Measuring overconfidence

- Ortoleva and Snowberg: “Subtracting knowledge from confidence leaves overconfidence”
- Measure OC with residual from regressions of confidence on 4th order knowledge polynomial
- Very high correlated with confidence (not as much an issue for their analysis)
- I propose new (simple) measure of OC:
 - $C_{it} =$ confidence for respondent i on topic t normalized to 0-1
 - $K_{it} =$ knowledge for respondent i on topic t normalized to 0-1
 - $OC_{it} = C_{it} - K_{it}$ for respondent i on topic t
Measuring overconfidence

- Ortoleva and Snowberg: “Subtracting knowledge from confidence leaves overconfidence”
- Measure OC with residual from regressions of confidence on 4th order knowledge polynomial
- Very high correlated with confidence (not as much an issue for their analysis)
- I propose new (simple) measure of OC:
- $C_{it} = \text{confidence for respondent } i \text{ on topic } t \text{ normalized to 0-1}$
- $K_{it} = \text{knowledge for respondent } i \text{ on topic } t \text{ normalized to 0-1}$
- $OC_{it} = C_{it} - K_{it} \text{ for respondent } i \text{ on topic } t$
- Use PCA across topics to get OC_i; two types of top-coding, OC_1, OC_2; validation (still implicit assumptions, necessary given data)
Preview of main results (y-axis = out-party favorability - in-party favorability)
Preview of main results (y-axis = out-party favorability - in-party favorability)

Figure: OC vs (relative) out-party dislike
Estimating OC effects on partyism

▶ Tobits w LHS: in-party favorability (F_I, 0-100), out-party (F_0, 0-100), diff (F_D, out minus in, -100 to 0)

▶ For H1, control for:
 ▶ Demographics (education, income, state and other FEs, age)
 ▶ Ideology (self-reported and Tausanovitch and Warshaw’s estimated via issue preferences)
 ▶ *and* 7-category party strength

▶ For H2, analyze indirect effects of OC on F_D via increasing strength of partisanship (include non-party controls)

▶ Use C as both placebo and as control

▶ IV $OC G$ with $OC E$ and vice versa to address measurement error

▶ Robust std errors (clustered are lower!)

▶ OC / C standardized (1 unit = 1 SD)
Estimating OC effects on partyism

- Tobits w LHS: in-party favorability (F_i, 0-100), out-party (F_0, 0-100), diff (F_D, out minus in, -100 to 0)

For H1, control for:
- Demographics (education, income, state and other FEs, age)
- Ideology (self-reported and Tausanovitch and Warshaw's estimated via issue preferences)
- *and* 7-category party strength

For H2, analyze indirect effects of OC on F_D via increasing strength of partisanship (include non-party controls)

- Use C as both placebo and as control
- IV OC G with OC E and vice versa to address measurement error

- Robust std errors (clustered are lower!)
- OC/C standardized (1 unit = 1 SD)
Estimating OC effects on partyism

- Tobits w LHS: in-party favorability (F_i, 0-100), out-party (F_0, 0-100), diff (F_D, out minus in, -100 to 0)
- For H1, control for:

- Demographics (education, income, state and other FEs, age)
- Ideology (self-reported and Tausanovitch and Warshaw's estimated via issue preferences)
- *and* 7-category party strength

- For H2, analyze indirect effects of OC on F_D via increasing strength of partisanship (include non-party controls)
- Use C as both placebo and as control
- IV OC G with OC and vice versa to address measurement error
- Robust std errors (clustered are lower!)
- OC/C standardized (1 unit = 1 SD)
Estimating \textit{OC} effects on partyism

- Tobits w LHS: in-party favorability (F_I, 0-100), out-party (F_0, 0-100), diff (F_D, out minus in, -100 to 0)
- For H1, control for:
 - Demographics (education, income, state and other FEs, age)
- For H2, analyze indirect effects of \textit{OC} on F_D via increasing strength of partisanship (include non-party controls)
- Use \textit{C} as both placebo and as control
- IV \textit{OC} \textit{G} with \textit{OC} \textit{E} and vice versa to address measurement error
- Robust std errors (clustered are lower!)
- \textit{OC}/\textit{C} standardized (1 unit = 1 SD)
Estimating OC effects on partyism

- Tobits w LHS: in-party favorability (F_I, 0-100), out-party (F_O, 0-100), diff (F_D, out minus in, -100 to 0)
- For H1, control for:
 - Demographics (education, income, state and other FEs, age)
 - Ideology (self-reported and Tausanovitch and Warshaw’s estimated via issue preferences)

- Use C as both placebo and as control
- IV OC G with OC E and vice versa to address measurement error
- Robust std errors (clustered are lower!)
- OC / C standardized (1 unit = 1 SD)
Estimating OC effects on partyism

- Tobits w LHS: in-party favorability \((F_I, 0-100)\), out-party \((F_0, 0-100)\), diff \((F_D, \text{out minus in, -100 to 0})\)
- For H1, control for:
 - Demographics (education, income, state and other FEs, age)
 - Ideology (self-reported and Tausanovitch and Warshaw’s estimated via issue preferences)
 - *and* 7-category party strength
- For H2, analyze indirect effects of OC on \(F_D\) via increasing strength of partisanship (include non-party controls)
- Use \(C\) as both placebo and as control
- IV OC \(G\) with OC \(E\) and vice versa to address measurement error
- Robust std errors (clustered are lower!)
- OC/C standardized (1 unit = 1 SD)
Estimating OC effects on partyism

- Tobits w LHS: in-party favorability (F_i, 0-100), out-party (F_o, 0-100), diff (F_D, out minus in, -100 to 0)
- For H1, control for:
 - Demographics (education, income, state and other FEs, age)
 - Ideology (self-reported and Tausanovitch and Warshaw’s estimated via issue preferences)
 - *and* 7-category party strength
- For H2, analyze indirect effects of OC on F_D via increasing strength of partisanship (include non-party controls)

- Use C as both placebo and as control
- IV OC G with OC E and vice versa to address measurement error
- Robust std errors (clustered are lower!)
- OC/C standardized (1 unit = 1 SD)
Estimating OC effects on partyism

- Tobits w LHS: in-party favorability (F_I, 0-100), out-party (F_0, 0-100), diff (F_D, out minus in, -100 to 0)
- For H1, control for:
 - Demographics (education, income, state and other FEs, age)
 - Ideology (self-reported and Tausanovitch and Warshaw’s estimated via issue preferences)
 - *and* 7-category party strength
- For H2, analyze indirect effects of OC on F_D via increasing strength of partisanship (include non-party controls)
- Use C as both placebo and as control

OC/C standardized (1 unit = 1 SD)

Robust std errors (clustered are lower!)

IV OCG with OCE and vice versa to address measurement error
Estimating OC effects on partyism

- Tobits w LHS: in-party favorability (F_I, 0-100), out-party (F_0, 0-100), diff (F_D, out minus in, -100 to 0)
- For H1, control for:
 - Demographics (education, income, state and other FEs, age)
 - Ideology (self-reported and Tausanovitch and Warshaw’s estimated via issue preferences)
 - *and* 7-category party strength
- For H2, analyze indirect effects of OC on F_D via increasing strength of partisanship (include non-party controls)
- Use C as both placebo and as control
- IV OC^G with OC^E and vice versa to address measurement error
Estimating *OC* effects on partyism

- Tobits w LHS: in-party favorability \((F_I, 0-100) \), out-party \((F_0, 0-100) \), diff \((F_D, \text{out minus in, -100 to 0}) \)
- For H1, control for:
 - Demographics (education, income, state and other FEs, age)
 - Ideology (self-reported and Tausanovitch and Warshaw’s estimated via issue preferences)
 - *and* 7-category party strength
- For H2, analyze indirect effects of *OC* on \(F_D \) via increasing strength of partisanship (include non-party controls)
- Use \(C \) as both placebo and as control
- IV \(OC^G \) with \(OC^E \) and vice versa to address measurement error
- Robust std errors (clustered are lower!)
Estimating OC effects on partyism

- Tobits w LHS: in-party favorability (F_i, 0-100), out-party (F_0, 0-100), diff (F_D, out minus in, -100 to 0)
- For H1, control for:
 - Demographics (education, income, state and other FEs, age)
 - Ideology (self-reported and Tausanovitch and Warshaw’s estimated via issue preferences)
 - *and* 7-category party strength
- For H2, analyze indirect effects of OC on F_D via increasing strength of partisanship (include non-party controls)
- Use C as both placebo and as control
- IV OC^G with OC^E and vice versa to address measurement error
- Robust std errors (clustered are lower!)
- OC/C standardized (1 unit = 1 SD)
Main results (LHS = F_D)

<table>
<thead>
<tr>
<th></th>
<th>Tobit</th>
<th>Tobit</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{-2} \times Dem$</td>
<td>-2.711**</td>
<td>-1.607</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>(1.171)</td>
<td>(1.761)</td>
<td>(2.775)</td>
</tr>
<tr>
<td>$C_{1} \times Dem$</td>
<td>-1.898</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.321)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC_{1}</td>
<td>-3.747***</td>
<td>-2.941*</td>
<td>-3.333*</td>
</tr>
<tr>
<td></td>
<td>(1.256)</td>
<td>(1.738)</td>
<td>(1.712)</td>
</tr>
<tr>
<td>$OC_{1} \times Dem$</td>
<td>-1.317</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.458)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{-3}</td>
<td>-0.285</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.755)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>740</td>
<td>740</td>
<td>740</td>
</tr>
<tr>
<td>N</td>
<td>1480</td>
<td>1480</td>
<td>1480</td>
</tr>
</tbody>
</table>
Main results (LHS = F_D)

<table>
<thead>
<tr>
<th></th>
<th>Tobit</th>
<th>Tobit</th>
<th>Tobit</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-2.711**</td>
<td>-1.607</td>
<td>n/a</td>
<td>-5.683**</td>
</tr>
<tr>
<td></td>
<td>(1.171)</td>
<td>(1.761)</td>
<td></td>
<td>(2.775)</td>
</tr>
<tr>
<td>$C \times$ Dem</td>
<td>-1.898</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.321)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>740</td>
<td>740</td>
<td>740</td>
<td>1480</td>
</tr>
</tbody>
</table>
Main results (LHS = F_D)

<table>
<thead>
<tr>
<th></th>
<th>Tobit</th>
<th>Tobit</th>
<th>Tobit</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-2.711**</td>
<td>-1.607</td>
<td>n/a</td>
<td>-5.683**</td>
</tr>
<tr>
<td></td>
<td>(1.171)</td>
<td>(1.761)</td>
<td>(2.775)</td>
<td></td>
</tr>
<tr>
<td>$C \times \text{Dem}$</td>
<td>-1.898</td>
<td></td>
<td>-5.683**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.321)</td>
<td></td>
<td>(2.775)</td>
<td></td>
</tr>
<tr>
<td>OC_1</td>
<td>-3.747***</td>
<td>-2.941*</td>
<td>-3.333*</td>
<td>-12.648**</td>
</tr>
<tr>
<td></td>
<td>(1.256)</td>
<td>(1.738)</td>
<td>(1.712)</td>
<td>(6.366)</td>
</tr>
<tr>
<td>$OC_1 \times \text{Dem}$</td>
<td>-1.317</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.458)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.755)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>740</td>
<td>740</td>
<td>740</td>
<td>1480</td>
</tr>
</tbody>
</table>
Indirect effects via party identity

<table>
<thead>
<tr>
<th></th>
<th>Republicans</th>
<th>Democrats</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Party Strength (OLS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>-0.0017</td>
<td>-0.0394</td>
<td>-0.0436</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OC</td>
<td>0.0905</td>
<td>0.1405**</td>
<td>0.1648***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>339</td>
<td>339</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>401</td>
<td>401</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2nd stage: LHS = F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-Str.</td>
<td>-7.53***</td>
<td>-7.12***</td>
<td>-7.12***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>-0.90***</td>
<td>0.000</td>
<td>-1.292</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OC</td>
<td>-3.35***</td>
<td>-3.35***</td>
<td>-3.859**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>339</td>
<td>339</td>
<td>339</td>
</tr>
</tbody>
</table>
Indirect effects via party identity

<table>
<thead>
<tr>
<th></th>
<th>1st stage: LHS = Party Strength (OLS)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Republicans</td>
<td>Democrats</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>(-0.0017)</td>
<td>0.0436</td>
<td>-0.0305</td>
</tr>
<tr>
<td></td>
<td>((0.0289))</td>
<td>((0.0288))</td>
<td>((0.0392))</td>
</tr>
<tr>
<td>(OC_1)</td>
<td>0.0905</td>
<td>0.1648***</td>
<td>0.1648***</td>
</tr>
<tr>
<td></td>
<td>((0.0642))</td>
<td>((0.0553))</td>
<td>((0.0793))</td>
</tr>
<tr>
<td>(N)</td>
<td>339</td>
<td>401</td>
<td>401</td>
</tr>
</tbody>
</table>

2nd stage: LHS = (Tobit)
Indirect effects via party identity

1st stage: LHS = Party Strength (OLS)

<table>
<thead>
<tr>
<th></th>
<th>Republicans</th>
<th></th>
<th>Democrats</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.0017</td>
<td>-0.0394</td>
<td>0.0436</td>
<td>-0.0305</td>
</tr>
<tr>
<td></td>
<td>(0.0289)</td>
<td>(0.0315)</td>
<td>(0.0288)</td>
<td>(0.0392)</td>
</tr>
<tr>
<td>OC_1</td>
<td>0.0905</td>
<td>0.1405**</td>
<td>0.1648***</td>
<td>0.2091***</td>
</tr>
<tr>
<td></td>
<td>(0.0642)</td>
<td>(0.0710)</td>
<td>(0.0553)</td>
<td>(0.0793)</td>
</tr>
<tr>
<td>N</td>
<td>339</td>
<td>339</td>
<td>339</td>
<td>401</td>
</tr>
</tbody>
</table>

2nd stage: LHS = F_D (Tobit)

<table>
<thead>
<tr>
<th></th>
<th>Republicans</th>
<th></th>
<th>Democrats</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Str.</td>
<td>-7.53***</td>
<td>-7.12***</td>
<td>-7.12***</td>
<td>-10.80***</td>
</tr>
<tr>
<td></td>
<td>(0.333)</td>
<td>(0.335)</td>
<td>(0.335)</td>
<td>(1.83)</td>
</tr>
<tr>
<td>C</td>
<td>-0.90***</td>
<td>0.000</td>
<td>-1.292</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
<td>(0.111)</td>
<td>(0.808)</td>
<td>(1.058)</td>
</tr>
<tr>
<td>OC_1</td>
<td>-3.35***</td>
<td>-3.35***</td>
<td>-3.859**</td>
<td>-4.009</td>
</tr>
<tr>
<td></td>
<td>(0.332)</td>
<td>(0.338)</td>
<td>(1.907)</td>
<td>(2.591)</td>
</tr>
<tr>
<td>N</td>
<td>339</td>
<td>339</td>
<td>339</td>
<td>401</td>
</tr>
</tbody>
</table>
Stronger effects for less educated \((LHS = F_D)\)

<table>
<thead>
<tr>
<th></th>
<th>Tobit</th>
<th>Tobit</th>
<th>Tobit</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>No college</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(OC_1)</td>
<td>-3.449**</td>
<td>-4.384**</td>
<td>-3.237</td>
<td>-18.906</td>
</tr>
<tr>
<td></td>
<td>(1.523)</td>
<td>(2.148)</td>
<td>(1.964)</td>
<td>(19.244)</td>
</tr>
<tr>
<td>(OC_1 \times \text{Dem})</td>
<td>1.515</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.054)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>-0.169</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.967)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>426</td>
<td>426</td>
<td>426</td>
<td>852</td>
</tr>
</tbody>
</table>
Stronger effects for less educated (LHS = F_D)

<table>
<thead>
<tr>
<th></th>
<th>Tobit</th>
<th>Tobit</th>
<th>Tobit</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>No college</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.523)</td>
<td>(2.148)</td>
<td>(1.964)</td>
<td>(19.244)</td>
</tr>
<tr>
<td>$OC_1 \times$ Dem</td>
<td>1.515</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.054)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>-0.169</td>
<td>(0.967)</td>
</tr>
<tr>
<td>N</td>
<td>426</td>
<td>426</td>
<td>426</td>
<td>852</td>
</tr>
<tr>
<td>College+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC_1</td>
<td>-0.967</td>
<td>-0.096</td>
<td>1.507</td>
<td>-6.231</td>
</tr>
<tr>
<td></td>
<td>(1.747)</td>
<td>(2.760)</td>
<td>(2.772)</td>
<td>(10.161)</td>
</tr>
<tr>
<td>$OC_1 \times$ Dem</td>
<td>-1.794</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.691)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>-1.378</td>
<td>(1.277)</td>
</tr>
<tr>
<td>N</td>
<td>314</td>
<td>314</td>
<td>314</td>
<td>628</td>
</tr>
</tbody>
</table>
Other explanations

- Non-cognitive social distance
- Control for perceived 7-point ideological distance between self and out-party (Dist)
- Motivated reasoning
- Mean responses to job changes in last yr (2010-11, so Obama pres):
 - -4.2 (million) for Democrats and -6.1 for Republicans
- Construct MR (based on 'motivation' of responses to economic questions and confidence); validate; use as control
- OC could be correlated with either of these
Non-cognitive social distance
Other explanations

- Non-cognitive social distance
- Control for perceived 7-point ideological distance between self and out-party (Dist)
Other explanations

- Non-cognitive social distance
- Control for perceived 7-point ideological distance between self and out-party (Dist)
- Motivated reasoning
Other explanations

- Non-cognitive social distance
- Control for perceived 7-point ideological distance between self and out-party (Dist)
- Motivated reasoning
- Mean responses to job changes in last yr (2010-11, so Obama pres):

-4.2 (million) for Democrats and -6.1 for Republicans

Construct MR (based on ‘motivation’ of responses to economic questions and confidence); validate; use as control

OC could be correlated with either of these
Other explanations

- Non-cognitive social distance
- Control for perceived 7-point ideological distance between self and out-party (Dist)

- Motivated reasoning
- Mean responses to job changes in last yr (2010-11, so Obama pres):
 - -4.2 (million) for Democrats and -6.1 for Republicans
Other explanations

- Non-cognitive social distance
- Control for perceived 7-point ideological distance between self and out-party (Dist)
- Motivated reasoning
- Mean responses to job changes in last yr (2010-11, so Obama pres):
 - -4.2 (million) for Democrats and -6.1 for Republicans
- Construct MR (based on ‘motivation’ of responses to economic questions and confidence); validate; use as control
Other explanations

- Non-cognitive social distance
- Control for perceived 7-point ideological distance between self and out-party (Dist)

- Motivated reasoning
- Mean responses to job changes in last yr (2010-11, so Obama pres):
 - -4.2 (million) for Democrats and -6.1 for Republicans
- Construct MR (based on ‘motivation’ of responses to economic questions and confidence); validate; use as control

- OC could be correlated with either of these
Distance control (LHS=F_D)

<table>
<thead>
<tr>
<th></th>
<th>Tobit</th>
<th>Tobit</th>
<th>Tobit IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.034</td>
<td>-1.201</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>(1.208)</td>
<td>(1.754)</td>
<td>(3.116)</td>
</tr>
<tr>
<td>$Dist$</td>
<td>-5.423***</td>
<td>-5.423***</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>(1.828)</td>
<td>(1.827)</td>
<td>(1.800)</td>
</tr>
<tr>
<td>$C \times Dem$</td>
<td>0.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.399)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>701</td>
<td>701</td>
<td>701</td>
</tr>
<tr>
<td>OC</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2.931**</td>
<td>-2.509</td>
<td>-3.917**</td>
</tr>
<tr>
<td></td>
<td>(1.335)</td>
<td>(1.782)</td>
<td>(1.755)</td>
</tr>
<tr>
<td>$Dist$</td>
<td>-5.438***</td>
<td>-5.439***</td>
<td>-5.392***</td>
</tr>
<tr>
<td></td>
<td>(1.830)</td>
<td>(1.834)</td>
<td>(1.829)</td>
</tr>
<tr>
<td>$OC \times Dem$</td>
<td>-0.741</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.596)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.660</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>701</td>
<td>701</td>
<td>701</td>
</tr>
<tr>
<td>OC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distance control ($\text{LHS}=F_D$)

<table>
<thead>
<tr>
<th></th>
<th>Tobit</th>
<th>Tobit</th>
<th>Tobit</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.034</td>
<td>-1.201</td>
<td>n/a</td>
<td>-2.791</td>
</tr>
<tr>
<td></td>
<td>(1.208)</td>
<td>(1.754)</td>
<td>(3.116)</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>-5.423***</td>
<td>-5.423***</td>
<td>n/a</td>
<td>-5.162***</td>
</tr>
<tr>
<td></td>
<td>(1.828)</td>
<td>(1.827)</td>
<td></td>
<td>(1.800)</td>
</tr>
<tr>
<td>$C \times \text{Dem}$</td>
<td>0.320</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.399)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>701</td>
<td>701</td>
<td>701</td>
<td>1402</td>
</tr>
</tbody>
</table>

*Note:*** indicates statistical significance at the 1% level.*
Distance control ($\text{LHS}=F_D$)

<table>
<thead>
<tr>
<th></th>
<th>Tobit</th>
<th>Tobit</th>
<th>Tobit</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.034</td>
<td>-1.201</td>
<td>n/a</td>
<td>-2.791</td>
</tr>
<tr>
<td></td>
<td>(1.208)</td>
<td>(1.754)</td>
<td>(3.116)</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>-5.423***</td>
<td>-5.423***</td>
<td>n/a</td>
<td>-5.162***</td>
</tr>
<tr>
<td></td>
<td>(1.828)</td>
<td>(1.827)</td>
<td>(1.800)</td>
<td></td>
</tr>
<tr>
<td>$C \times \text{Dem}$</td>
<td>0.320</td>
<td></td>
<td></td>
<td>(2.399)</td>
</tr>
<tr>
<td>N</td>
<td>701</td>
<td>701</td>
<td>701</td>
<td>1402</td>
</tr>
<tr>
<td>OC_1</td>
<td>-2.931**</td>
<td>-2.509</td>
<td>-3.917**</td>
<td>-8.390*</td>
</tr>
<tr>
<td></td>
<td>(1.335)</td>
<td>(1.782)</td>
<td>(1.755)</td>
<td>(4.507)</td>
</tr>
<tr>
<td>Dist</td>
<td>-5.438***</td>
<td>-5.439***</td>
<td>-5.392***</td>
<td>-5.295***</td>
</tr>
<tr>
<td></td>
<td>(1.830)</td>
<td>(1.834)</td>
<td>(1.829)</td>
<td>(1.884)</td>
</tr>
<tr>
<td>$OC_1 \times \text{Dem}$</td>
<td>-0.741</td>
<td></td>
<td></td>
<td>(2.596)</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>0.660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.758)</td>
</tr>
<tr>
<td>N</td>
<td>701</td>
<td>701</td>
<td>701</td>
<td>1402</td>
</tr>
</tbody>
</table>
MR control \((\text{LHS} = F_D)\)

<table>
<thead>
<tr>
<th></th>
<th>Tobit</th>
<th>Tobit</th>
<th>Tobit IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C\times \text{Dem})</td>
<td>-2.536**</td>
<td>-1.131</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>(1.154)</td>
<td>(1.706)</td>
<td>(2.744)</td>
</tr>
<tr>
<td>(\text{MR})</td>
<td>-0.951</td>
<td>-0.895</td>
<td>-0.771</td>
</tr>
<tr>
<td></td>
<td>(1.455)</td>
<td>(1.428)</td>
<td>(1.565)</td>
</tr>
<tr>
<td>(C\times \text{G} \times \text{Dem})</td>
<td>-2.577</td>
<td></td>
<td>(2.264)</td>
</tr>
<tr>
<td>(N)</td>
<td>742</td>
<td>742</td>
<td>742</td>
</tr>
<tr>
<td>(O)</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{OC} \times \text{Dem})</td>
<td>0.630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>742</td>
<td>742</td>
<td>742</td>
</tr>
</tbody>
</table>

Notes:
- **** = significant at the 0.01 level.
- * = significant at the 0.05 level.
- n/a = not applicable.
MR control (LHS=F_D)

<table>
<thead>
<tr>
<th></th>
<th>Tobit</th>
<th>Tobit</th>
<th>Tobit</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C^G</td>
<td>-2.536**</td>
<td>-1.131</td>
<td>n/a</td>
<td>-3.984</td>
</tr>
<tr>
<td></td>
<td>(1.154)</td>
<td>(1.706)</td>
<td></td>
<td>(2.744)</td>
</tr>
<tr>
<td>MR</td>
<td>-0.951</td>
<td>-0.895</td>
<td></td>
<td>-0.771</td>
</tr>
<tr>
<td></td>
<td>(1.455)</td>
<td>(1.428)</td>
<td></td>
<td>(1.565)</td>
</tr>
<tr>
<td>$C^G \times$ Dem</td>
<td></td>
<td>-2.577</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.264)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>742</td>
<td>742</td>
<td>742</td>
<td>738</td>
</tr>
</tbody>
</table>
MR control (LHS = F_D)

<table>
<thead>
<tr>
<th></th>
<th>Tobit</th>
<th>Tobit</th>
<th>Tobit</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C^G</td>
<td>-2.536**</td>
<td>-1.131</td>
<td>n/a</td>
<td>-3.984</td>
</tr>
<tr>
<td></td>
<td>(1.154)</td>
<td>(1.706)</td>
<td></td>
<td>(2.744)</td>
</tr>
<tr>
<td>MR</td>
<td>-0.951</td>
<td>-0.895</td>
<td>-0.771</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.455)</td>
<td>(1.428)</td>
<td>(1.565)</td>
<td></td>
</tr>
<tr>
<td>$C^G \times$ Dem</td>
<td>-2.577</td>
<td></td>
<td>(2.264)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>742</td>
<td>742</td>
<td>742</td>
<td>738</td>
</tr>
<tr>
<td>OC_1^G</td>
<td>-2.038*</td>
<td>-2.394</td>
<td>-0.732</td>
<td>-10.995***</td>
</tr>
<tr>
<td></td>
<td>(1.172)</td>
<td>(1.638)</td>
<td>(1.532)</td>
<td>(4.242)</td>
</tr>
<tr>
<td>MR</td>
<td>-0.311</td>
<td>-0.301</td>
<td>-0.517</td>
<td>0.354</td>
</tr>
<tr>
<td></td>
<td>(1.482)</td>
<td>(1.481)</td>
<td>(1.502)</td>
<td>(1.608)</td>
</tr>
<tr>
<td>$OC_1^G \times$ Dem</td>
<td>0.630</td>
<td></td>
<td>(2.439)</td>
<td></td>
</tr>
<tr>
<td>C^G</td>
<td></td>
<td></td>
<td>-1.292</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.899)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>742</td>
<td>742</td>
<td>742</td>
<td>738</td>
</tr>
</tbody>
</table>
Concluding remarks

Seemingly robust evidence that overconfidence in knowledge causes relative out-party dislike

Both beyond, and through, strength of partisanship

Supports idea that partisan hostility is, at least partly, unintentional misunderstanding

Spread the gospel to reduce partyism? (through stigma?)

And let’s apply cognitive bias toolbox to this area more generally
Concluding remarks

- Seemingly robust evidence that overconfidence in knowledge causes relative out-party dislike
Concluding remarks

- Seemingly robust evidence that overconfidence in knowledge causes relative out-party dislike
- Both beyond, and through, strength of partisanship

Spread the gospel to reduce partyism? (through stigma?)
And let's apply cognitive bias toolbox to this area more generally
Concluding remarks

- Seemingly robust evidence that overconfidence in knowledge causes relative out-party dislike
- Both beyond, and through, strength of partisanship
- Supports idea that partisan hostility is, at least partly, unintentional misunderstanding

Spread the gospel to reduce partyism? (through stigma?)
And let's apply cognitive bias toolbox to this area more generally
Concluding remarks

- Seemingly robust evidence that overconfidence in knowledge causes relative out-party dislike
- Both beyond, and through, strength of partisanship
- Supports idea that partisan hostility is, at least partly, unintentional misunderstanding
- Spread the gospel to reduce partyism? (through stigma?)
Concluding remarks

- Seemingly robust evidence that overconfidence in knowledge causes relative out-party dislike
- Both beyond, and through, strength of partisanship
- Supports idea that partisan hostility is, at least partly, unintentional misunderstanding
- Spread the gospel to reduce partyism? (through stigma?)
- And let’s apply cognitive bias toolbox to this area more generally