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Summary 

​ AI tools are becoming a daily fixture of academic and public life. But their environmental 

footprint – carbon emissions, water usage, and global labor inequality – remains largely 

invisible. This brief draws from recent research to reveal how AI systems extract energy, water, 

minerals, and labor from vulnerable communities. It calls on students, faculty, and institutions to 

use AI more thoughtfully and advocate for transparency, sustainability, and justice in how these 

tools are developed and deployed.  

 
Introduction 

Artificial Intelligence (AI) is often framed as a transformative force, from personalized 

tutoring and medical diagnostics to scientific discovery. But behind these promises lies a vast, 

often invisible infrastructure that consumes enormous amounts of electricity, water, and physical 

hardware. Far from immaterial, AI systems are powered by data centers running on fossil-fueled 

grids, cooled by freshwater, and built from rare-earth minerals mined under extractive 

conditions.  

These environmental and social costs are not evenly shared. Communities in the Global 

South and marginalized areas of the Global North often bear the brunt of carbon emissions, water 

withdrawals, e-waste, and hidden labor that make AI possible (without sharing in its benefits). 



 

As Kate Crawford writes in The Atlas of AI, artificial intelligence is not just code or algorithms; 

it is a planetary industrial system built on layers of extraction: of energy, labor, minerals, and 

data (2021).  

This brief offers a window into AI’s hidden footprint. Drawing on recent academic 

research and investigative journalism, it examines three key concerns: carbon emissions and 

energy use, water consumption, and global inequalities. Its goal is to help our campus 

community understand the full cost of AI technologies and to spark conversation about how 

students, faculty, and institutions might respond with care, equity, and accountability.  

 

Carbon Emissions and Energy Use 

AI’s rising energy demands are often illustrated by the staggering costs of training large 

models like GPT-3 or GPT-4. But while training garners headlines, the real long-term burden 

comes from inference, the everyday use of these systems by billions of users. 

According to MIT Technology Review, inference now accounts for 80-90% of total AI 

computing power, and that number is climbing. By 2028, AI alone could consume as much 

electricity as 22% of U.S. households, a staggering figure given technology’s growth (O’Donnell 

& Crownhart, 2025, p. 4). Even a single ChatGPT prompt uses over 1,000 joules. With an 

estimated one billion queries daily, that adds up to 109 gigawatt-hours annually, or enough to 

power more than 10,000 homes (p. 24). 

These energy demands are met by sprawling data centers, many of which run on fossil 

fuel-heavy grids. In Virginia, where electricity is primarily coal-based, AI’s carbon footprint is 

especially high. Data center electricity there is 48% more carbon-intensive than the national 



 

average (p. 21). As Kate Crawford writes, “AI systems are not in the cloud – they are on Earth, 

in data centers, run on coal” (The Atlas of AI, 2021, p. 28).  

Exacerbating this impact is a profound lack of transparency. Most tech companies don’t 

disclose the energy or emissions associated with their AI tools. As O’Donnell and Crownhart put 

it, “Most firms serve up a total black box” (p. 12), leaving when it comes to energy emissions 

researchers, regulators, and the public unable to verify environmental claims.  

While inference now dominates AI’s emissions profile, training large models still carries 

a significant carbon cost. Bender et al. (2021) estimate that training a single large transformer 

model emitted over 284 metric tons of CO2, which is about five decades of emissions from an 

average person (p. 612).  

And the trend is accelerating. A 2024 Capgemini Invent study projects that under a 

high-growth scenario, AI’s electricity use could increase 24.4-fold by 2030. Generative AI 

(GenAI) models are especially power-hungry. A single inference from Meta’s LLaMA 405B 

model can consume 17 watt-hours, roughly the energy needed to toast a slice of bread 

(Desroches et al., 2024, p. 14). Though GenAI accounts for less than a third of corporate AI use 

cases, it drives 99.9% of total energy consumption (p. 18).  

AI also depends on vast amounts of physical hardware: GPUs, custom chips, and server 

clusters built from rare earth minerals. The emissions from mining and manufacturing (especially 

cobalt and lithium) are rarely counted in carbon reports. As Crawford (2021) notes, the AI 

supply chain begins in mines and ends in landfills. These extractive processes disproportionately 

impact the Global South, where environmental protection is often weaker and labor conditions 

more exploitative. Frequent hardware upgrades also contribute to a growing e-waste crisis, with 

much of it exported to countries unequipped to safely process toxic components.  



 

AI’s energy infrastructure is vast, accelerating, and deeply unequal. Any serious 

conversation about sustainable technology must reckon with this hidden footprint.  

 

Water Use and Resource Scarcity 

While AI’s carbon emissions have drawing increasing attention, its water footprint 

remains largely hidden. From cooling servers to powering data centers to manufacturing chips, 

AI consumes enormous volumes of water. Oftentimes it does so in regions already facing 

drought and water stress. Researchers typically classify AI’s water use into three categories:  

1.​ Scope-1: On-site cooling to prevent servers from overheating 

2.​ Scope-2: Off-site electricity generation, particularly from water-cooled power plants 

3.​ Scope-3: Supply chain production, including chip and infrastructure manufacturing 

Together, these sources create a massive and geographically uneven demand for freshwater, with 

urgent implications for environmental justice.  

​ In one striking example, Li et al. (2025) found that training GPT-3 at a Microsoft’s U.S. 

data center consumed more than 5.4 million liters of water, accounting for both cooling and 

electricity-related use. Scaled globally, the impact is staggering. The authors project that by 

2027, AI could be responsible for 4.2 to 6.6 billion cubic meters of water withdrawals, which is 

more than the entire annual water use of Denmark or half the United Kingdom (p. 1).  

​ Even everyday AI use adds up. A single GPT-3 query can “drink” a 500 mL water bottle 

every 10 to 50 prompts, depending on where it’s hosted. In Arizona, a drought-prone state, each 

request uses about 30 mL of water, compared to 7.6 mL in Texas (Li et al., 2025, Table 1, p. 5). 

​ These disparities highlight a deeper equity issue: location matters. Siddik et al. (2021) 

show that while only 20% of U.S. data centers are located in the arid West and Southwest, these 



 

regions account for 70% of the industry’s water scarcity-related impact (p. 7). In places like 

Arizona, water use per kilowatt-hour can be nine times higher than in cooler climates (Li et al., 

2024). By placing massive water-cooled infrastructure in drought-prone areas, tech companies 

shift the environmental burdens onto communities already facing water insecurity.  

​ As Kate Crawford writes in The Atlas of AI, “What looks like machine intelligence is 

often just water, power, and labor in disguise” (paraphrased from Crawford, 2021, p. 8). The 

placement of AI infrastructure, whether near overdrawn hydroelectric dams or in dry regions, 

reveals how environmental risks are unevenly distributed in service of digital convenience.  

​ Ironically, efforts to reduce carbon emissions can increase water use. “Follow the sun” 

scheduling, which shifts workloads to solar-powered data centers, can raise water demand due to 

higher temperatures and evaporation rates. As Li et al. caution, “minimizing one footprint might 

increase the other…water and carbon footprints are not substitutable" (2025, p. 6). This tradeoff 

underscores the need for holistic sustainability metrics that address multiple resource impacts, 

not just carbon. 

​ Yet despite these realities, most AI developers do not disclose water use. While some 

model cards include carbon estimates, water consumption (especially Scope-2 and Scope-3) is 

almost never reported. Without comprehensive tracking, even engineers struggle to assess the 

systems they build. And without public reporting, communities have no way to understand the 

true cost of the technologies reshaping their local water systems.  

 

Geographic and Structural Inequities 

​ AI’s environmental impacts are not only massive, but they are also deeply uneven. From 

carbon-intensive data centers in coal-dependent regions of the United States to water-stressed 



 

facilities in the Global South, the burdens of AI’s infrastructure fall hardest on communities with 

the least power to resist them or benefit from them. These patterns echo long-standing legacies of 

environmental injustice, resource extraction, and digital colonialism.  

​ Towards Environmentally Equitable AI via Geographical Load Balancing, a study on 

environmentally equitable AI deployment (Li et al., 2024), reveals how optimization strategies 

(e.g. routing AI tasks to regions with the cheapest electricity) can unintentionally magnify harm. 

These systems often ignore local water scarcity or grid pollution. For example, in peak summer 

months, data centers in Arizona may consume up to 9 liters of water per kilowatt-hour for 

cooling. This is nine times more than equivalent centers in cooler climates (Li et al., 2024, pg. 3).  

​ The same study highlights stark carbon disparities. In 2020, Google’s Finland data center 

ran on 94% carbon-free energy, while its Singapore facility operated with just 4%. That’s a 

23-fold difference in emissions per unit of computation (pg. 2). Systems optimized for global 

efficiency can obscure these localized costs, concentrating environmental and health harms in 

specific communities. 

​ But these inequities extend beyond water and carbon. In her 2025 paper Digital 

Colonialism, Samavia Zia argues that AI development replicated global power imbalances rooted 

in colonial history. Corporations based in the Global North extract massive amounts of personal 

data from the Global South (often without meaningful consent or compensation) and turn it into 

profit. Just as with past extractive industries, value flows out, and harm stays behind.  

Zia also exposes the hidden labor force behind AI. In countries like the Philippines, India, 

and Kenya, underpaid workers perform critical tasks: labeling training data, flagging toxic 

content, and moderating platform abuse. This so-called automation still depends on human labor, 

but it’s labor that remains hidden and undervalued. At the same time, AI surveillance tools are 



 

disproportionately deployed in postcolonial and marginalized communities, deepening existing 

structures of control. 

These realities mirror what Kate Crawford describes as the “new geographies of AI,” a 

global infrastructure that reproduces imperial dynamics under the banner of technological 

innovation. AI, she writes, is not abstract but “extractive, unequal, and deeply material” 

(Crawford, 2021, p. 39).  

Taken together, these perspectives challenge conventional ideas of sustainability. A 

system may appear “green” on average while externalizing serious harm to specific people and 

places. A truly ethical and sustainable AI must not just account for watts, liters and carbon, but 

also for geography, labor, history, and justice. 

 

Gaps in Transparency and Accountability 

 Despite AIs vast and growing environmental footprint, there is surprisingly little public 

visibility into how much energy, water, or material these systems actually consume. The lack of 

standardized environmental reporting limits public understanding, stalls scientific research, and 

hinders both corporate accountability and policymaking. In short, the transparency gap is one of 

the biggest barriers to meaningful climate action in the AI industry. 

As the MIT Technology Review’s reports, most AI companies do not disclose basic data 

like electricity use, carbon emissions, or water consumption (O’Donnell & Crownhart, 2025, p. 

12). Without this information, researchers, regulators, and clients are left in the dark, unable to 

verify sustainability claims or make informed decisions. 

This secrecy is not accidental. As Kate Crawford argues in The Atlas of AI, the industry 

operates under a “facade of abstraction,” where glossy narratives about models and innovation 



 

conceal the material realities beneath. She writes, “Artificial intelligence is both embodied and 

material, made from natural resources, fuel, human labor, infrastructures, logistics, histories, and 

classification” (2021, p. 8). The phrase “artificial intelligence” itself masks the global networks 

of mining, manufacturing, waste, and labor extraction that make AI possible. “AI extracts far 

more from us and the planet than is widely known” (Crawford, p. 32). 

Some developers have called for greater transparency, but current tools fall short. Most 

large language models include technical specs (e.g. training time, dataset size) but rarely disclose 

environmental costs. Water usage is almost entirely never reported in technical papers, model 

cards, and cloud dashboards. As Li et al. (2025) observe, this omission “makes it difficult for 

even engineers to assess the true resource costs of the systems they build” (p. 1). 

To address this, Li and colleagues call for full-scope environmental accounting, including 

scope-1(on-site), scope-2(electricity-related), and scope-3 (hardware and supply chain) water 

usage. This mirrors the more mature carbon accounting frameworks now common in climate 

science. Without such tracking, sustainability efforts will remain reactive and incomplete.  

Some institutions are proposing more concrete tools. The Capgemini Invent report 

(Desroches et al., 2024) recommends the standardized environmental “eco-labels” that rate AI 

models by energy use per task (e.g. chat, image generation, RAG). These metrics could empower 

organizations to choose lower-impact tools and incentivize more efficiency model design.  

But without enforced disclosure requirements, AI companies continue to expand 

operations often with public subsidies and limited oversight. In Virginia, for instance, residents 

may face monthly utility hikes of up to $37.50 to cover rising data center energy needs 

(O’Donnell & Crownhart, 2025, p. 30). If the public is expected to foot the bill, they deserve 

access to the environmental facts.  



 

Transparency is not a luxury, it is a baseline requirement for climate accountability, 

sustainability, and democratic oversight in the age of AI. But as Crawford reminds us, 

transparency alone is not enough. We must not only ask what is being optimized, but also for 

whom and at whose expense.   

 

Conclusion 

Artificial intelligence is reshaping the world through both its capabilities and the 

infrastructure it requires. As this brief has shown, AI systems depend on immense amounts of 

energy, water, hardware, and labor. These costs are often hidden from public view, yet they fall 

heaviest on communities already facing climate stress, water scarcity, and systemic inequality.  

​ The environmental impacts of AI are not evenly shared. Data centers are sited in 

water-stressed regions. Power comes from fossil-fueled grids. Supply chains rely on rare-earth 

minerals mined under extractive conditions. The benefits of AI tend to concentrate in wealthy 

institutions and corporations, while the burdens (carbon emissions, water use, e-waste, and 

invisible labor) are pushed onto the Global South and marginalized communities in the Global 

North.  

As a college community, we may not be able to redirect the entire trajectory of AI’s 

development. We can demand greater transparency from tech companies. We can advocate for 

sustainable research practices and more ethical standards for digital infrastructure. More 

importantly, we can refuse the myth that AI is somehow immaterial or neutral. We can 

understand it as a powerful system whose impacts on water, carbon, and justice must be 

confronted and reimagined.  

 



 

Recommendations: Acting with Care in an Age of AI 

No single college can reverse the planetary-scale systems that underlie artificial 

intelligence. But institutions of higher education do shape how technologies are adopted, 

discussed, and taught. As students, educators, and researchers, we have the opportunity and 

responsibility to use AI thoughtfully, ask better questions, and advocate for more just 

technological futures. Below are a few ways our community can start: 

1.​ Use AI with awareness. Every query carries hidden environmental and social 

costs. Just as we learn to conserve electricity or water, we can be mindful of our 

digital consumption. Avoid unnecessary or repetitive AI prompts, especially for 

image and video generation (energy-intensive). Treat AI as a tool, not a default 

for all writing or thinking. Consider the labor and resources behind the screen. 

Whose data, water and energy make these tools possible.  

2.​ Include environmental ethics in AI education. Including materials on AI’s 

environmental footprint and global inequalities. Teaching sustainable computing 

practices, such as efficient model design or greener deployment.  

3.​ Reframe how we talk about intelligence. We can challenge the idea that 

artificial intelligence is abstract, weightless, or inevitable. We can ask the 

important questions in our dialogues. Who builds it? Who benefits? Who bears 

the cost? What kinds of intelligence do we overlook when we overvalue 

automation? How might we build systems grounded not just in performance, but 

in equity, sustainability, and care? 
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