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Abstract—The recent explosion of interest in smart building
energy-efficiency has led to a proliferation of public energy
datasets. Most of these datasets focus on depth (i.e., many
devices in a few buildings) as opposed to breadth (e.g., a
few devices in many buildings), and thus most smart building
algorithms are evaluated on depth-oriented datasets. We argue
that increasing data breadth conveys important benefits that are
not easily achieved by even a large quantity of deep data. As an
illustrative case study, we consider the problem of classifying
previously unseen appliances using an off-the-shelf classifier
trained on known instances of other devices. Our experiments on
multiple real-world datasets (both depth- and breadth-oriented)
demonstrate significant and sustained benefits from increased
data breadth, and point to the importance of incorporating
greater breadth into similar techniques that rely on generalized
electrical load models.

I. INTRODUCTION

Nearly all techniques for smart and energy-efficient build-
ings rely on high-quality data for experimentation and vali-
dation. Over the past several years, the research community
has responded vigorously to this need through the release
of real-world energy datasets. Today there are over 15 such
datasets publicly available [1], most of which are collected
from residential homes (though some are also collected from
larger buildings, such as university dormitories).

A typical energy data collection deployment consists of a
small set of homes in which sensing and data collection is
ubiquitous. A representative example of this approach is the
REDD dataset [2], which monitored data from a wide range
of electrical appliances within six residential homes. Other
well-known examples of such datasets include UK-DALE [3]
and BLUED [4]. These datasets and many others share the
same core characteristics: a small number of homes and a high
degree of instrumentation. We refer to such datasets as deep

datasets. Deep datasets provide detailed but inherently narrow
profiles of energy usage – i.e., the consumption patterns of a
relatively small set of specific devices as used by a particular
group of building occupants.

An alternate approach is a dataset collected from a large
number of homes, but possibly with a lesser degree of in-
strumentation (e.g., monitoring a few large appliances from
100 homes). We refer to such datasets as broad datasets. A
prominent example of a broad dataset is Dataport [5], which
contains appliance-level data from over 1000 homes. While

broad datasets may provide a less complete picture of any
particular home or group of occupants, they are also less
subject to the idiosyncrasies of the specific devices or users
under observation. Unfortunately, broader data also generally
comes with compromises, such as limited data resolution (e.g.,
1/60 Hz in Dataport) or a lack of device-specific data. Owing
to such limitations, as well as to the logistical challenges of
collecting broad, real-world data [6], depth-oriented datasets
remain the default for most researchers.

A notable limitation of deep datasets, however, is that while
most common types of devices may be represented, there are
generally few instances of any particular type. For example,
while a typical home is likely to have all the usual appliances –
refrigerator, dishwasher, and so forth – it is not likely to have
more than one or two of each. As a result, while a typical
deep dataset may contain hundreds of monitored devices from
a few homes, there may be little variation among specific
device types within the data. This implicit homogeneity may
be problematic for smart building applications that rely on
generalized models of devices. Algorithms for varied problems
such as identification, forecasting, and disaggregation are often
developed using depth-oriented datasets, but are designed to be
effective in more general environments. To ensure generality,
it is often necessary to assume implicitly that devices are
representative of their respective types – e.g., one refrigerator
behaves mostly like another, and thus good performance on
a few refrigerators is indicative of good performance more
broadly. However, there are multiple reasons this assumption
might not hold, including unpredictable activity patterns of
“smart” appliances, unusual usage patterns by owners, or
simple variations between manufacturers. A simple example
is shown in Figure 1, which depicts the power consumption
of two refrigerators. While there are many similarities in
their usage profiles (e.g., similar power consumption, cyclic
behavior, and “inrush” current at the start of each cycle),
their actual cycle patterns are quite different, with the former
displaying an oscillating pattern while the latter displays a
flatter, more consistent pattern. Broader datasets include more
of these device variations, but minimal attention has been
given to whether these variations are significant and how much
breadth is needed to account for most ‘typical’ variations.

As an exploratory case study of this question, we consider
the problem of automatically identifying electrical devices
based on their consumption. Automatic device identification
is a well-studied problem, particularly within the context of978-1-5386-8099-5/19/$31.00 ©2019 IEEE
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Fig. 1. The power usage of two refrigerators (left and right), demonstrating
variations in cycle behavior.

non-intrusive load monitoring (NILM) [7]–[9], which aims to
disaggregate whole-house usage into individual devices. We
focus on the simpler problem of identifying single devices
using device-level data (e.g., from a smart outlet), which
has been termed non-intrusive load identification (NILI) [10].
Unlike in prior work, however, we explicitly consider breadth
by measuring performance on devices not previously observed
during training. For example, the system might be trained
using a particular LG refrigerator, but then used to identify
a different Maytag refrigerator. Ideally, such an identification
system should be able to identify both devices using a general
model of a refrigerator, without respect to any particular
refrigerator within the source dataset.

We conduct experiments using an off-the-shelf classifier
and two public datasets: Tracebase [11] and Dataport [5]. We
find that the classifier improves significantly as the number
of devices within a given device class (i.e., exploiting data
breadth) is increased, including (and especially) beyond the
size of most popular datasets. Our results point to the potential
of applying broader datasets to many types of energy analytics.

II. RELATED WORK

Prior work on outlet-level device identification has consid-
ered a variety of machine learning based approaches, but most
either requires user-driven training [12] or does not consider
the unseen device problem in detail (e.g., [10], [13], [14]).
For example, [12] requires the manual operation of a device
during an explicit training phase. Support vector machines are
used in [15] for automated identification using both 1 Hz data
and higher resolutions, but even these resolutions are higher
than in many existing datasets.

Much work relating to device identification exists within
the space of non-intrusive load monitoring (NILM) research,
which has been extensively studied (e.g., overviews in [7],
[9]). Since the NILM disaggregation problem was originally
investigated using simple edge detection techniques [8], newer
techniques have included Hidden Markov Models [2], Viterbi’s
algorithm [16], and deep learning [17]. Most of this work
centers on lower-resolution data that is typical of smart meters;
more accurate identification has been accomplished using
high-frequency data from specialized meters [18]. NILM stud-
ies have noted various difficulties in disaggregating unknown
houses; e.g., low accuracy [2] or a lack of homes on which
to train [17]. Other recent work [19] has highlighted the
particular importance of broader datasets to further NILM.
Here, we investigate the significance of data breadth from
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Fig. 2. Data flow in the unseen device classification problem.

the perspective of unseen device identification, and further
consider the tradeoff of breadth vs. data resolution that often
exists in real-world datasets.

III. UNSEEN DEVICE CLASSIFICATION

We formulate the problem of identifying unseen devices
as a timeseries classification problem. Specifically, consider
a device connected to a smart outlet that measures its real
energy consumption (e.g., once per second). For simplicity,
we consider energy data in 24-hour chunks, and assume that
the same device is connected (but not necessarily active)
for the entire 24-hour period. Our goal is to automatically
identify the category of the attached device (e.g, “dishwasher”,
“microwave”, or similar) using only the energy timeseries data
collected from the outlet, even if we are not able to identify
the device more specifically (e.g., a specific manufacturer and
model) due to never having encountered that particular device.

A straightforward approach is to take historical data from
devices with known (labeled) categories, split the data into
24-hour segments, and then build a classifier to label new
timeseries. Such a system could be used to automatically label
devices in a home without human intervention, and could also
adapt to movements of devices from one outlet to another. This
basic approach was demonstrated in [10] and shown to result
in over 90% classification accuracy over 15 device categories
using standard cross-validation.

In the problem of unseen device classification, however, we
make a key distinction, and focus our attention on devices that
are completely absent from training data – we call these unseen

devices. For example, suppose that there are four microwaves
labeled m1 through m4. We might only have data from m1

and m2 available during training (the seen devices), but would
still like to be able to identify m3 and m4 (the unseen devices)
using the trained classifier. This basic data flow is illustrated in
Figure 2. Note that in addition to the seen devices, any number
of devices of other classes may be present in training as well
(e.g., ovens, lights, etc), but in contrast to standard cross-
validation, here we are interested specifically in performance
on the unseen devices within the category of interest. In effect,



other device categories exist solely to force the classifier to
discriminate between the shared device category of the seen
and unseen devices and all other device categories learned
during training. Testing will then only be successful if the
learned model truly generalizes across many devices (seen or
unseen) within the category.

Identifying unseen devices is more difficult than the sim-
pler identification problem (using cross-validation) for several
reasons. First, multiple devices of the same device class might
have different characteristics, such as several microwaves
with different wattages or several dishwashers with different
cycle behaviors. Second, owners of devices might also exhibit
significantly different usage patterns. User behavior could even
result in substantial differences among identical devices – for
example, one owner of a washing machine might always use
the default cycle settings, while another owner of the exact
same washing machine might use the special cycle settings
for different loads (which could result in more varied energy
consumption). As another example, a freezer that is opened
frequently would display a less regular compressor cycle than
a freezer that is rarely opened (such as a basement freezer).

Despite these challenges, unseen device classification is a
more realistic (and useful) formulation of the problem. In a
real-world deployment of an automated identification system,
a limited number of devices would be used to train a classifier,
but a potentially limitless number of future devices could then
be presented for identification. For a large or long-running
deployment, the number of unseen devices would likely dwarf
the number of seen devices. Hence, performance on unseen
devices is arguably the most appropriate metric with which to
judge the effectiveness of such a system.

Features. Classification is performed on features computed
over each 24-hour chunk of raw timeseries data. Our current
system uses a simple set of statistics-based features: average
power and variance, maximum power, the percentage of time
the device is active (defined as power consumption above a
baseline threshold), and a set of multiple features capturing
the magnitude of energy deltas. Each of these delta features
is defined as the number of observed power deltas (i.e., steps)
within a certain range of magnitudes. For example, the 10-
20W delta feature would consist of the number of power steps
of magnitude between 10W and 20W over the course of the
24-hour observation period. Due to the tendency of larger steps
to be split across multiple measurements (since power changes
may occur in the middle of a meter measurement interval),
back-to-back power steps in the same direction are aggregated
as a preprocessing step before computing delta features.

Importantly, we note that extensive feature engineering is
not our primary goal here. Instead, we are interested primarily
in the classifier’s ability to generalize across a device class
(i.e., exploiting data breadth) using simple features; we would
expect a more sophisticated classifier to be able to generalize
at least as well as our simple model.

Device Type 1 Hz # 1/60 Hz # Tracebase Dataport
Air Conditioner 18 50

Coffeemaker 6 –
Dishwasher 12 50

Dryer 11 50
Electric Car 4 50

Furnace 8 50
Lamp 9 –
Laptop 16 –
Lights 9 50

Microwave 13 50
Monitor 12 –

Oven 7 50
Refrigerator 19 50

TV 10 –
Washing Machine 16 50

TABLE I
DEVICE TYPES AND DEVICE COUNTS IN SECOND- AND MINUTE-LEVEL

TEST DATASETS.

IV. EVALUATION

We implemented the approach described in Section III using
the J48 decision tree classifier, which implements the C4.5
algorithm [20]. Intuitively, C4.5 builds a decision tree by
repeatedly splitting the data using the attribute that most effec-
tively discriminates between the remaining training instances
(as measured by information gain). The classifier was trained
and tested on data from the Tracebase [11] and Dataport [5]
datasets. Tracebase is intended as a repository of device data
and contains second-resolution (1 Hz) readings from roughly
10 instances of many major appliance types. Dataport is a
much broader dataset containing minute-level readings from
several hundred homes. Dataport has also recently added
second-level data from a smaller subset of homes. For our
experiments, we consider two separate collections of test data:

• Minute-level dataset: a contiguous month of minute-
level data from Dataport.

• Second-level dataset: second-level data from 40 homes
in Dataport taken over the same month, combined with
second-level data from Tracebase for a greater variety of
devices and larger device count.

In short, the minute-level dataset is quite broad, but with
lower data quality than is typically found in most popular
datasets. The second-level dataset is more representative of
other datasets, but retains a reasonable degree of breadth due
to the use of multiple datasets.

Each device type in the data (e.g., “microwave”) consists of
a number of device instances (e.g., m1 and m2) as well as a
number of timeseries per device instance (each corresponding
to one day of usage data where there was at least some
activity). Importantly, we note that not every device type is
present (or monitored) in every home; thus, the number of
device instances of any given type is substantially lower in
most cases than the number of homes present. Supplementing
the second-level Dataport data with Tracebase devices partially
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Fig. 3. Baseline classification accuracy on full datasets using 10-fold cross-
validation.

counteracts this limitation. For the minute-level dataset, the
much larger number of homes present in Dataport largely
addresses this problem; here, we randomly select 50 devices
out of the hundreds available for each device type. Table I lists
the specific device types we consider, their source dataset(s),
and how many device instances are considered within each
dataset. Note that one consequence of our dataset construction
is that the second-level dataset has 15 device types, whereas
the minute-level dataset has only 10 distinct types due to the
limited number of Tracebase device types.

A. Baseline Performance

To establish a baseline, we first train the classifier using
each complete dataset (i.e., without excluding any devices)
and test using standard 10-fold cross validation. This approach
represents the conventional case where all devices are likely
to be represented in the training data. Classification accuracy
is shown in Figure 3, broken down by device class for both
the second-level and minute-level dataset (devices with only
one bar have only second-level data). Accuracy is high for all
device classes in both datasets; the worst single result is 79%
accuracy when identifying ovens in the second-level dataset.
Note that while minute-level data is normally expected to
result in lower accuracy relative to the second-level data, the
smaller number of classes in the minute-level dataset some-
times results in modestly higher accuracy. Overall accuracy
across all classes is 92% for the second-level dataset and 89%
for the minute-level dataset. In short, when all devices are
present during training, even a simple classifier such as ours
is able to distinguish many device classes with high accuracy.

B. Unseen Device Performance

We now consider classification performance on devices not
present during training. To do so, we partition the devices of
a given type into seen and unseen, and exclude all data from
unseen devices during training. We then evaluate the classifier
only on data from unseen devices. This procedure measures
the ability of the classifier to recognize generalized appliance
types (e.g., “refrigerator”) instead of any specific devices (e.g.,
a specific LG refrigerator model) present in the data.

Suppose we are considering a particular device class C (e.g.,
microwave) containing nc distinct devices (i.e., the number of
microwaves from which at least one day of known activity
exists). To evaluate performance on class C, we first choose
k devices of class C (where k < nc) and designate those k
devices as seen. The remaining (nc�k) devices of class C are

designated as unseen. The classifier is then trained using the
complete dataset except for these unseen devices. In short, the
difference from the baseline classification experiment is that
a set of unseen devices is designated, and then all timeseries
produced by these devices are held back during training.

During testing, we present the classifier only with timeseries
from the unseen devices (i.e., all presented timeseries are
of class C) and define accuracy as the percentage of these
timeseries that were correctly labeled as type C.

Note that nc is effectively a measurement of the breadth of
the dataset (the instance counts shown in Table I). The value
of k (which is bounded by nc) determines both the number of
devices from which to generalize the class, as well as the
number of devices with which to evaluate the generalized
model. A depth-oriented dataset would typically require a
small k, while a breadth-oriented dataset would support a
much larger k.

Since we are interested in the impact of varying breadth, for
every C and corresponding nc we train and test the classifier
for every possible k from 1 to nc � 1. In the k = 1 case,
one representative device is used and the classifier attempts to
identify every other device of that class, while in the k = nc�1
case, every device of the class except for one is used to train
the model, which is then tested on the sole holdout.

However, even for a given choice of k, the specific choice
of which k devices are designated as seen is highly significant.
For example, consider the case of k = 1, in which only
one device is observed to learn the category. If the one
chosen device happens to be poorly representative of the
class as a whole (e.g., an unusually energy-efficient device
or a device used in an atypical manner), then the resulting
accuracy will likely suffer versus a more typical seen device
used for training. To avoid unpredictably skewing results based
on device variations, we repeat the training and testing process
for every possible k-sized subset of devices. Thus, for every
possible choice of C and k, we run a total of

�nc

k

�
trials and

average over the results. In the case of the minute-level data
(where nc = 50), running all possible trials is intractable;
thus, for a given setting of k, we instead average over 100
independent trials with randomly chosen devices.

Classification accuracy on unseen devices for several set-
tings of k is shown in Figures 4 and 5 for second-level
and minute-level data, respectively. Figure 4 shows results for
k = 1, k = 3, and k = 0.75nc, reflecting the fact that nc is
both variable across classes and as low as 4 depending on the
class. With a larger (and constant) setting of nc = 50, Figure 4
shows results for k = 1, k = 20, and k = 40, leaving at least
10 unseen devices in all cases for testing.

Device-level accuracy rarely exceeds 80% in both cases,
and is substantially less in both cases than their respective
baselines shown in Figure 3 (which only once falls below
80%). Differences across classes are largely explained by the
degree of variability within a class; e.g., air conditioners tend
to be more consistent and predictable than refrigerators; hence,
identification of unknown A/Cs is more accurate than unknown
refrigerators both for small and large values of k.
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Fig. 4. Classification accuracy on unseen devices using second-level dataset.
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Fig. 5. Classification accuracy on unseen devices using minute-level dataset.

More significant, however, are the results across different
values of k. Using only a single device for training (k = 1),
performance is universally poor, indicating that a single device
instance cannot reliably capture the behavior of the class.
This effect is most pronounced in the case of the minute-
level dataset, where a single seen device results in an average
accuracy of only 9%. Increasing k, however, has a significant
positive impact on accuracy in all cases. In the second-level
case, most devices achieve at least a 2x increase in their
accuracy through increasing breadth; in the minute-level case,
the average improvement is nearly 8x.

It is fairly intuitive that increasing k beyond 1 leads to
improvements; given that no two devices are likely to be
perfectly alike, having more than one training device results in
a more general (and accurate) model. Less obvious, however,
is the continued improvement that we observe in Figure 5
when increasing k from an already sizable 20 to 40. One
might expect a “leveling-off” as breadth is increased past a
certain point once the model is as generalized as possible.
However, while we do see diminishing returns as k increases
further, notable gains continue beyond k = 20 as we move
to k = 40. Some of these gains are substantial, e.g., a 50%
increase in the case of lights. In short, even the considerable
breadth exercised at the k = 20 level is not enough to fully
generalize the model. Furthermore, we note that even k = 20
is an unattainable level of breadth for most energy datasets
that are widely-used in the community.

Given the importance of the specific devices involved, we
also consider the effect of varying the device instances for a
given setting of k. Figure 6 shows the second-level classifier’s
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Fig. 6. Training or testing on only a few devices produces instability in either
the model itself or in observed results.

average performance and variance across all trials on two
typical device types (A/Cs and dishwashers) for their entire
range of k values. The variance is particularly notable here,
exhibiting a valley-like shape – higher for small and large
values of k, but lower for values in between. This result
underscores the point that a model learned from only a few
devices (even if those few devices produce a substantial
amount of data) is likely to result in an overly specific model
that exhibits unstable behavior when applied more generally.
The opposite case (i.e., k close to nc) also speaks to the
diversity of devices within the class; e.g., even with a general
model trained on 19 of 20 devices, the 20th device may differ
substantially and be difficult to identify (which also explains
why the steady upward trend of the mean accuracy in Figure 6
stops at the largest values of k). In these cases, our model
features may be inadequate to effectively characterize some
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of the outlier devices, leading to poor performance in cases
where outliers comprise most or all of the test devices.

Given that broader datasets such as Dataport exist, a natural
question to ask is whether the benefits of broader data are
worth the tradeoffs of less detailed data (e.g., 1/60 Hz versus
1 Hz resolution). The results shown in Figures 4 and 5 are not
directly comparable, due to the greater number of classes in the
second-level case (which degrades relative performance). For
a more reliable test, we repeat the classification results on the
refrigerator class for both second and minute-level data using
only Dataport devices. The results of this experiment for varied
k are shown in Figure 7. Initially, it is clear that the accuracy of
the second-level case is both absolutely higher (for a given k)
as well as faster-growing as k is increased, demonstrating that
the finer resolution is a significant advantage to the classifier.
However, a different message may also be taken from this
result – that the benefits of greater breadth may counterbal-
ance some data quality shortcomings. For example, in the
case of Figure 7, it is preferable to use the lower-resolution
dataset containing 20 device instances over the the higher-
resolution dataset containing 5 device instances. Furthermore,
as discussed previously, we see small but consistent benefits
as breadth increases; in this experiment, starting at k = 42,
the minute-level classifier surpasses the average accuracy of
the second-level classifier at k = 7 (the highest setting we are
able to evaluate given our dataset), and with substantially less
variance.

Finally, we note that superior accuracy results could very
likely be achieved by more sophisticated classifiers, either us-
ing more advanced features or different techniques altogether
(e.g., deep learning). Our goal here is not to produce the best
absolute results, but to demonstrate that greater data breadth
can be effectively exploited even in a simple classifier and
can even compensate for lower quality data. The same would
presumably hold of more advanced classifiers as well.

V. CONCLUSION

In this work, we argue that a gap exists in most popular
and publicly-available energy datasets: while most datasets
focus on deeply-instrumenting a relatively small number of
buildings, fewer datasets focus on a broader collection span-
ning a larger variety of devices. Moreover, datasets lacking

depth may limit the applicability of experimental results that
were collected using such datasets. As a motivating case
study, we consider the problem of identifying the types of
specific devices using an off-the-shelf classifier without having
seen those devices beforehand. By varying breadth itself in
experiments on real-world data, we find that a level of breadth
substantially beyond that found in most public datasets is
highly beneficial in distilling generalized device models, and
can even compensate for reduced data quality (e.g., lower
resolutions) versus conventionally ‘deep’ data. These results
underscore the value of considering breadth in curating future
energy datasets and of employing such datasets in smart
building research.
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