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1. INTRODUCTION
Efficient search for and location of content and resources is

of fundamental importance in a wide variety of today’s net-
works. These range from peer-to-peer (P2P) networks such
as BitTorrent to online social networks such as Facebook,
and from ad hoc wireless networks to wireline networks.
Three common search methods employed in such systems

include flooding, random walks, and queries to third parties,
such as Google. Flooding provides low search latencies, typ-
ically on the order of logn, where n denotes the number of
nodes in the system, but at the cost of high overhead; see,
e.g., [6, 4]. Search based on a single random walk (RW)
incurs low overhead, O(1), but can yield a large search la-
tency on the order of O(n) when the content is poorly repli-
cated [4]. Multiple RWs have been shown to reduce laten-
cies (see, e.g., [6]), and adaptive techniques for selecting the
number of RWs and the time-to-live (TTL) associated with
each RW have been explored through simulation. However,
there have been no formal analysis nor theoretical results
that address these issues, both within the context of peer-
to-peer systems and more generally. Last, search queries to
third parties such as Google incur low overhead but at a cost
that is very difficult to quantify, namely the loss of privacy.
We explore the use of multiple RWs for content search in a

network where a failure occurs with very low probability and
can be answered by a query to an external third party that
always either has the content or knows where the content
is located. We address the following fundamental questions:
(i) How does the number of RWs affect search time as the
system scales in size? (ii) What is the communications over-
head incurred through the use of multiple RWs? (iii) Can
the probability of a search failure be made sufficiently small?
(iv) If a failed query is routed to a third party server, can
the load placed on this server be made to scale?
Our goal is to understand how different system and work-

load parameters affect answers to the above questions. For
example, it is necessary to attach a TTL to each RW in
order to limit their communications overhead. Moreover,
performance is sensitive to the demand pattern for content
and to the level of content replication.
The main contributions of our paper are as follows. We

extend the model proposed in [4], where users are repre-
sented as nodes in a graph and edges correspond to pairs of
nodes that know of each other, and use this extended model
to characterize the average delay for a successful query as a
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function of the TTL, the popularity of the content, and the
level of replication. We also characterize the query overhead
placed on each node, the probability of a failed search and
the load placed on an external server due to failed queries.
We find that query delays are O(logn), that the probability
of search failure asymptotically tends to zero and that query
per node and external server overheads are O(1), provided
that the number of RWs and the TTL threshold are set
properly when content popularity is balanced by the level
of replication. When the level of replication does not match
demand, then it is impossible to maintain all metrics of in-
terest unchanged. However, we show that it is possible to
maintain low query latency and per node query overhead at
the cost of increased external server load.
We formally establish these results by first deriving a set

of bounds on the hitting time to a set of nodes via one
or more independent RWs on a connected graph. We then
exploit these bounds to derive expressions for the asymptotic
behavior of the expected delay, search failure probability,
server load and peer load as a function of the number of RWs
deployed and the per-walk TTL threshold. These theoretical
results, which should be of independent interest well beyond
the present application, are formally established for the case
that users are nodes in a graph with bounded maximum
degree and that exhibits expander properties. Simulation
experiments are used to investigate various issues of both
theoretical and practical interest, validating and quantifying
our results both for bounded degree random networks and
for networks that exhibit a power law degree distribution.
Although there has been recent theoretical work on mul-

tiple RWs that focuses on characterizing either cover times
– i.e., time to visit all nodes in the graph (see, e.g., [2]) or
hitting times – i.e., time to reach a specific node in the graph
(see, e.g., [3]), none of these studies focus on the problem
of analyzing the hitting time of multiple RWs to a set of
nodes. Our results on hitting times to sets of nodes builds
on the work in [3] on hitting times to single nodes and builds
on classical ideas from [1] on hitting times of a single RW
to sets of nodes. We refer the interested reader to [7] for
additional technical details and related work.
Section 2 formally describes the content network model

and introduces expander graphs along with some of its rele-
vant properties. We revisit hitting times of RWs on graphs
in Section 3 and derive our extensions of these main results
to account for multiple RWs. Section 4 presents our main
results regarding the scalability of multiple RW search on
networks, as well as a brief discussion of simulation results.



2. MODEL

2.1 Content network model
We model the network as a connected non-bipartite graph

G = (V,E) where V = {1, . . . , n} is the finite set of vertices
and E ⊂ V × V is the set of undirected edges between ver-
tices. Associated with this system is a set of contents such
that zero or more copies of each content is stored in the
system; popularity may vary from content to content. We
assume search queries are made at each node according to a
Poisson process with rate µ. At each Poisson epoch, a query
for a given content of interest occurs with probability (w.p.)
p = p(n). Search queries at different nodes are assumed to
be independent of each other. We further assume that nodes
each have a copy of the content of interest w.p. q(n), which
may not necessarily equal p(n) in an asymptotic sense. Note
that copies of the content may move around so long as the
fraction of nodes holding a copy is roughly q(n). Without
loss of generality, we focus on a single content of interest.
A search query is handled by starting k = k(n) indepen-

dent RWs that progress through the network until any one of
them finds a copy of the content being requested or the num-
ber of hops taken by each RW has reached a TTL threshold
T (n). In the first case, a copy of the content is returned to
the node initiating the RWs. In the second case, the query
either fails or is directed to a third party server, which re-
turns the answer. We assume that the RWs execute in lock
step and that they all halt as soon as any one of them finds
the requested content. The hybrid P2P model of [4] maps
into the above model where nodes correspond to peers and
queries correspond to the arrival/departure of a peer.
We are interested in three performance metrics for this

content network comprised of n nodes: D(n) – the average
time required to satisfy a search query; Pf (n) – the proba-
bility that a search query fails; and U(n) – the node traffic
load measured in search queries handled per unit time. In
addition, for the case where a search query failure is routed
to a server, we are also interested in Us(n) – the server traf-
fic load measured in search queries per unit time. Next we
provide some background on RWs and expander graphs.

2.2 Random walks and expanders
Let N(S) = {i ∈ V : ∃j ∈ S ⊂ V s.t. (i, j) ∈ E} denote

the set of neighbors of the nodes in set S ⊂ V . Let di denote
the degree of vertex i and define dmax := maxi∈V di to be
the maximum degree.
We study a discrete-time (DT) RW on the graph, which

is defined to be the DT Markov chain (MC) {X(t) ; t =
0, 1, . . .} with transition probability matrix P = [pij ] where

pij =
{

1/di, (i, j) ∈ E,
0, otherwise.

Let P(t) = [pij(t)] denote the t-th step transition proba-
bility matrix associated with the RW, t = 1, 2, . . ., where
pij(1) = pij . Because G is connected and non-bipartite,
the finite-state MC is irreducible, aperiodic and reversible.
Moreover, the RW admits a unique stationary distribution
π = (π1, . . . , πn) with πi = di/

∑
j∈V dj , i ∈ V . Let π(S)

denote the stationary probability for the set of states S ⊂ V .
Define πA to be the stationary distribution conditioned to
A ⊂ V via πA(i) := π(i)/π(A), i ∈ A.
We next define the vertex expansion ratio gG as gG :=

minS:|S|≤n/2 |N(S)|/|S|. Now, consider a sequence of graphs

{Gn} where Gn is a connected non-bipartite graph with n
vertices. We assume that dmax(n) ≤ d for some constant
d ≥ 2. Let g(n) = gGn and define g := lim infn→∞ g(n).
Lastly, we focus on {Gn} such that g > 0, i.e., the sequence
g(n) is bounded away from zero. Such a sequence of graphs
is called an expander family.
Define the relaxation time τ2 of a RW on graph G to be

the inverse of the spectral gap of the RW: τ2 = 1/(1 −
max{λ2, |λn|}). Here, λi denotes the i-th largest eigenvalue
of the RW, i = 1, . . . , n, such that 1 = λ1 > λ2 ≥ · · · ≥ λn ≥
−1. Henceforth we assume λ2 ≥ |λn|. This can always be
guaranteed by allowing the RW to be lazy, i.e., requiring a
RW at each step to remain at a node w.p. 1/2 [5, Ch 12].

3. HITTING TIME RESULTS
In this section we exploit classical results on reversible

MCs to derive bounds on the hitting time to a set A ⊂ V by
k ≥ 1 independent RWs on the graphs Gn, where we assume
n = |V | large and |A|/|V | small. Consistent with our model
of Section 2, we focus here on DTMCs noting that analogous
hitting-time results for continuous-time (CT) MCs can be
similarly derived. All proofs and details are provided in [7].
Consider a subset A of states V with π(A) small, in the

sense of [1]. Let TA denote the hitting time to set A; namely,
TA = min{t ≥ 0 : X(t) ∈ A}. Let Pβ [·] and Eβ [·] re-
spectively denote the probabilities and expectations for the
MC started at time 0 with probability distribution β; sim-
ilarly, Pu[·] and Eu[·] denote the same operators when the
MC starts in state u ∈ V at time 0.
We first consider the case of k = 1 and establish the fol-

lowing key result on the relationship between hitting time
and relaxation time. Our derivation relies on classical re-
sults for reversible DT and CT MCs [1]. To this end, let PA

denote the matrix P restricted to Ac = V \ A, and hence
PA is a substochastic matrix; similarly, let QA denote the
generator for the corresponding CTMC.

Lemma 3.1. For a fixed subset A ⊂ V , the hitting time
TA satisfies

Eπ[TA] ≤ τ2/π(A), (1)
Pπ[TA > t] ≤ (1− π(A)/τ2)t−1, t = 1, . . . . (2)

Now, we turn to consider the case k > 1. Let T kA denote
the hitting time to set A ⊂ V by k independent RWs on
the graphs Gn. Define πk := (π, . . . , π) to be the stationary
distribution of k nodes selected independently from the sta-
tionary distribution. Lemma 3.1 then allows us to conclude
the following result.

Lemma 3.2. For a fixed subset A ⊂ V , the hitting time
T kA satisfies

Pπk [T kA > t] ≤ (1− π(A)/τ2)k(t−1), t = 1, . . . , (3)

Eπk [T kA] ≤ 1
1− (1− π(A)/τ2)k . (4)

Our consideration of the subsetsA ⊂ V has been such that
π(A) is small, or equivalently Eπ[TA] is large, in comparison
with the relaxation time τ2. These conditions will indeed
hold for sufficiently large n and sufficiently small |A|/|V | for
expander graphs. Formally, our conditions on the subsets
A ⊂ V are such that τ2(n)/π(A) = ω(1) and τ2(n)/Eπ[TA] =
o(1), which can be combined with Lemma 3.2. Focusing on
the case where the k RWs start from the same vertex u /∈ A,



our interest is in the behavior of Eu[T kA] as n becomes large,
for which we derive the following result.

Lemma 3.3. For a fixed subset A ⊂ V , an arbitrary ver-
tex u /∈ A and large n, the hitting time T kA satisfies

Eu[T kA] ≤ (7/2 logn+ log k) + 1
1− (1− π(A)/τ2)k . (5)

Next, if {Gn} is an expander family, we then have τ2(n) =
O(1), due to λ2 ≥ |λn|. Combining this asymptotic relation-
ship together with Lemma 3.3 yields

Eu[T kA] ≤ O

(
logn+ log k + 1

1− (1− π(A))k

)
. (6)

In addition to providing limits on the expected hitting time
for k RWs, this bound plays an important role in our choice
of the number of RWs. Specifically, we seek large values of
k(n) so long as the third term on the right-hand side of (6)
grows slower than O(logn+ log k).

4. PERFORMANCE RESULTS
We now turn our attention to the behavior of D(n), U(n),

Pf (n) and Us(n) in the limit as n → ∞, leveraging the re-
sults of the previous sections. Our interest is in the asymp-
totic behavior of these performance metrics as a function of
the number of RWs deployed, k(n), and the per-walk TTL
threshold, T (n). To this end, consider a node u that issues
a search query w.p. p(n); recall that p(n) may not equal
the probability that a node has a copy of the content, q(n).
Without loss of generality, our analysis focuses on search
queries for a single content of interest. We shall generi-
cally use A ⊂ V to refer to the set of nodes that hold a
copy of the requested content. By independence, the sta-
tionary probability associated with this set A ⊂ V is given
by Q(V,A) = q(n)|A|(1− q(n))|V |−|A|, A ⊆ V . Letting M
denote a generic random variable for the number of nodes
which hold a copy of the requested content, we then have
that M is binomially distributed with population n− 1 and
parameter q(n). Throughout the analysis that follows, use
is made of the inequality π(A) ≥ |A|/(ndmax), A ⊂ V .
Based on our previous assumptions/results, we consider

T (n) = Θ(lognmax{1, log(nq(n))}), (7)

k(n) = max
{

1,min
{ 1
q(n) logn,

n

logn

}}
. (8)

There are several cases of interest for our analysis of the
performance metrics D(n), U(n), Pf (n) and Us(n). Start-
ing with the case 1/q(n) = O(logn), we have from (8) that
k(n) = O(1). The results of [4] then apply, and therefore
D(n) = O(1/p(n)), Us(n) = U(n) = O(1) and Pf (n) → 0
as n → ∞. Hence, we now focus on the cases of interest
where k(n) grows with n, deriving bounds on the perfor-
mance metrics D(n), U(n), Pf (n), Us(n) in terms of k(n),
T (n), p(n), q(n), and considering the asymptotic behavior of
these bounds under different asymptotic properties for q(n)
and p(n). We assume throughout that n is large, |A|/|V | is
small, and {Gn} is an expander family, hence τ2(n) = O(1).
Starting with the metric D(n), we establish [7]:

D(n) = O(logn) + T (n)(1− q(n))n−1.

In the case that 1/q(n) = o(n), the second term goes to zero
as n → ∞ and we have D(n) = O(logn). When 1/q(n) =

Ω(n), then T (n) = O(logn) from (7) and D(n) = O(logn).
Turning to the performance metric U(n), we show [7]:

U(n) ≤ µp(n)k(n)O(logn).

In the case that 1/q(n) = o(n), then from (8) k(n) is of
the order 1/(q(n) logn), which yields U(n) = O(p(n)/q(n));
note that the communication overhead does not scale if
p(n)/q(n) = ω(1). When 1/q(n) = Ω(n), there is a proba-
bility bounded away from zero that the search will fail, and
therefore U(n) = O(np(n)) in this case.
Considering the metrics Pf (n) and Us(n), the case 1/q(n) =

O(logn) implies k(n) = 1 and the arguments in [4] are
easily extended to establish Pf (n) → 0 as n → ∞ and
Us(n) = O(p(n)/q(n)). When 1/q(n) = Ω(n), we show [7]
that Pf (n) is bounded away from zero as n → ∞ and
that Us(n) = O(np(n)). Lastly, for 1/q(n) = o(n) and
1/q(n) = ω(logn), we establish [7] that, as n→∞,

Pf (n)→ 0 and Us(n) ≤ O(p(n)/q(n)).

In the case p(n) = Θ(q(n)), we obtain thatD(n) = O(logn),
U(n) = Us(n) = O(1), and Pf (n)→ 0 as n→∞.
To empirically validate and quantify the properties of mul-

tiple RW search in large-scale content networks, we also
study the behavior of such systems through a simulation
of a P2P network that employs many properties of these
content networks along the lines of [4], considering both ex-
pander graphs and power law graphs generated by prefer-
ential attachment. Our simulation results show that search
query latency, average network load and average server load
across various scenarios are respectively O(logn), O(1) and
O(1) for both expander graph and power-law graph over-
lay networks, which consistently match our theoretical re-
sults. Even when p 6= q, especially p > q, the query latency
and network load continue to match our theoretical results.
These results further demonstrate that multiple RWs effec-
tively control query latency and bound network/server over-
heads, thus ensuring the system remains scalable to very
large network sizes without overwhelming individual users,
even when sparsely-available items are requested by many
users. Additional details and results are provided in [7].
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