
Kudzu:

A Decentralized and Self-Organizing

Peer-to-Peer File Transfer System

by

Sean K. Barker

Jeannie Albrecht, Advisor

A thesis submitted in partial fulfillment
of the requirements for the

Degree of Bachelor of Arts with Honors
in Computer Science

Williams College
Williamstown, Massachusetts

May 25, 2009

Contents

1 Introduction 8
1.1 Goals . 10
1.2 Contributions . 10
1.3 Contents . 11

2 Background 12
2.1 Networking Paradigms . 12
2.2 P2P Paradigms . 13

2.2.1 Napster . 13
2.2.2 Kazaa . 14
2.2.3 Gnutella . 15
2.2.4 BitTorrent . 16
2.2.5 DHTs . 18

2.3 Properties of P2P Networks . 19
2.3.1 Scalability . 19
2.3.2 Incentives . 20
2.3.3 Download Performance . 21

2.4 Summary . 21

3 Kudzu: An Adaptive, Decentralized File Transfer System 22
3.1 Design Goals . 22
3.2 Network Structure and Queries . 23

3.2.1 Query Behavior . 23
3.2.2 Keyword Matching . 24

3.3 Network Organization . 25
3.3.1 Organization Policies . 26
3.3.2 Naive Policy . 27
3.3.3 Fixed Policy . 27
3.3.4 TF-IDF Ranked Policy . 28
3.3.5 Machine Learning Classifier Policy . 30

3.4 Download Behavior . 33
3.4.1 File Identification . 33
3.4.2 Chunks and Blocks . 34
3.4.3 Swarms . 35
3.4.4 Gossip . 36

3.5 A Distributed Test Framework . 37
3.5.1 Simulating User Behavior . 37
3.5.2 Replayer Design . 38

3.6 Summary . 39

2

CONTENTS 3

4 Implementation: The Kudzu Client 40
4.1 Communication Framework . 40

4.1.1 Java RMI . 41
4.1.2 Java Serialization . 42
4.1.3 Protocol Buffers . 42
4.1.4 Kudzu Message Encoding . 43
4.1.5 Connection Management . 44

4.2 Message Types . 46
4.3 Test Framework . 47

4.3.1 Data Parsing and Cleaning . 49
4.3.2 Virtual User Assignment . 49
4.3.3 Simulation . 50
4.3.4 Logging . 50
4.3.5 Bootstrapping . 51

4.4 Summary . 51

5 Evaluation 52
5.1 Evaluation Metrics . 52

5.1.1 Bandwidth Utilization . 52
5.1.2 Query Recall . 53
5.1.3 Download Speeds . 54

5.2 Dataset Peer Selection . 54
5.3 Bandwidth Motivation . 55
5.4 Organization Strategies . 57

5.4.1 Policy Bandwidth Use . 58
5.5 Query Recall Tests . 59

5.5.1 Network Organization . 60
5.6 Download Tests . 69
5.7 Summary . 71

6 Conclusion 72
6.1 Future Work . 72

6.1.1 Organization with Machine Learning Classifiers 72
6.1.2 Incentive Model and Adversaries . 73
6.1.3 Testing Environment . 73
6.1.4 New Datasets . 74
6.1.5 Anonymity and Privacy . 74

6.2 Summary of Contributions . 75

List of Figures

2.1 Client-server network (left) and peer-to-peer network (right). 13
2.2 Example Napster network. 14
2.3 Example Kazaa network with three supernodes. 15
2.4 Example BitTorrent network with two seeders and three leechers. 17

3.1 A non-optimal separating hyperplane H1 and an optimal separating hyperplane H2
with margin m. Test point T is misclassified as black by H1 but correctly classified
as white by H2. 32

3.2 A Kudzu network of 5 nodes containing 3 download swarms. Solid lines indicate peer
connections, while dotted lines indicate swarm connections. 34

4.1 User interaction with the Kudzu client. 41
4.2 One of Kudzu’s protocol buffer definitions. 43
4.3 Protocol buffer specification of base container message. 44
4.4 Protocol buffer specification of all message payload types. 48
4.5 An example dataset user entry with 1 file and 2 queries. 49

5.1 Unique query ratios in a network with uncapped TTL. 56
5.2 Aggregate bandwidth usage across a range of max TTL values. 57
5.3 Aggregate bandwidth usage versus max TTL for each of the four organization strategies. 58
5.4 Query recall versus max TTL for each of the four organization strategies. 60
5.5 Network topology resulting from naive organization. Note the weakly connected clus-

ter in the upper right. 62
5.6 Circular network topology resulting from naive organization with passive exploration. 64
5.7 Circular network topology resulting from naive organization with active exploration. 64
5.8 Naive organization with passive exploration and noted coverage gaps (shaded regions)

and highly interconnected node groups (demarcated by lines). 65
5.9 Circular network topology resulting from TFIDF organization with passive exploration. 67
5.10 Circular network topology resulting from TFIDF organization with active exploration. 67
5.11 Aggregate bandwidth usage versus max TTL including naive with active exploration. 68
5.12 Query recall versus max TTL including naive with active exploration. 68
5.13 Download completion CDFs for Kudzu and BitTorrent. 70

4

List of Tables

2.1 Overview of P2P network paradigms. 18

5.1 Overview of benefits and limitations of our four organization strategies. 69

5

Abstract

The design of peer-to-peer systems presents difficult tradeoffs between scalability, efficiency, and
decentralization. An ideal P2P system should be able to scale to arbitrarily large network sizes
and be able to accomplish its intended goal (whether searching or downloading) with a minimum
amount of overhead. To this end, most P2P systems either possess some centralized components
to provide shared, reliable information or impose high communication overhead to compensate for
a lack of such information, both of which are undesirable properties. Furthermore, testing P2P
systems under realistic conditions is a difficult problem that complicates the process of evaluating
new systems. We present Kudzu, a fully decentralized P2P file transfer system that provides both
scalability and efficiency through intelligent network organization. Kudzu combines Gnutella-style
querying capabilities with BitTorrent-style download capabilities. We also present our P2P test
harness that replays genuine P2P user data on Kudzu in order to obtain realistic usage data without
requiring an existing user base.

6

Acknowledgements

Foremost thanks are due to my advisor, Jeannie Albrecht, for mentoring me both in this thesis and
in the rest of my computer science education at Williams. This work would not have been possible
without her guidance and suggestions. Thanks are also due to Tom Murtagh, my second reader, for
helpful comments during editing as well as to the rest of the department for providing an engaging
academic environment for the past four years. I am also grateful to my girlfriend Lizzie and the rest
of my family for their patience and understanding while I worked on this thesis. Finally, a thanks
to my fellow thesis students Catalin and Mike and the rest of my computer science friends for many
shared late nights in the lab.

7

Chapter 1

Introduction

In the past decade, one of the greatest beneficiaries of increasing consumer broadband adoption
has been the development of peer-to-peer (P2P) systems. The traditional model of online content
consumption is based around dedicated providers such as corporate web servers that provide up-
stream content to home users and other content consumers. In this model, providers are generally
companies or technically savvy users, but the majority of Internet users do not share content directly
with each other due to technical barriers such as the knowledge required to set up and manage a
server. The onset of high-bandwidth, always-on broadband connections and a greater prevalence of
high-demand electronic media such as MP3s brought with it new opportunities to provide services
through users themselves. To this end, peer-to-peer systems emerged in which users were able to
share content directly with each other, circumventing both intermediary services and often (to the
chagrin of the traditional content providers) legal restrictions. In recent years, P2P usage has seen
dramatic increases and is now one of the most prevalent forms of online activity: recent surveys of
net usage have ranked P2P traffic as the largest consumer of North American bandwidth, accounting
for nearly half of all online traffic and roughly three quarters of upstream traffic [29].

P2P systems have been applied to a variety of functions, with file sharing being the most widely
known. However, P2P systems have diverged widely according to various design choices. One
of the most important factors separating one P2P system from another is the system’s degree of
decentralization. Under the traditional provider-consumer model, centralization and the problems
that come with it were taken for granted, and steps were taken to compensate, usually by adding
backup machines. In the P2P paradigm, however, there is the opportunity to build systems that do
not rely on specific machines, network connections, or users to function normally. In such a system,
service downtime is typically significantly less and maintenance to keep the service running is greatly
reduced if not outright eliminated.

Centralization, however, has some clear benefits when applied to an (ostensibly) P2P systems.
Centralized systems are easy to design, well understood, and simple to control. It is likely no
coincidence that the first successful P2P system, Napster, was totally reliant on a centralized server
to match users and initiate file transfers. Though it was heralded as a P2P system both by proponents
and detractors, Napster was effectively a centralized service that simply delegated the final pieces

8

9

of work to the users themselves. Napster ultimately fell victim to its centralization and was forcibly
shut down, thus completely eliminating the service overnight. More decentralized networks, while
not subject to the same sort of problems as Napster, have made various sacrifices to centralization.
The Gnutella network, for instance, was in its original incarnation fully decentralized, but did not
scale to large network sizes due to excessive network overhead. Later incarnations of the network
compensated by promoting certain peers to special status, thereby forming hubs in the network
and introducing potential problem points. BitTorrent networks, while offering efficient and high-
performance parallel downloads, sacrifice the entire capability of file querying in favor of centralized
‘trackers’ and rely on centralized repositories of torrent files to allow users to connect to the network.
This means that third parties such as Google or sites like The Pirate Bay are relied on to actually
find content on a BitTorrent network.

While decentralized P2P systems have been heavily studied, in practice, truly decentralized
systems have been shown to be prone to serious scalability issues. In large part, this has been a result
of the difficulty of finding resources on a decentralized network when there is no central authority to
query. Systems have turned to searching significant portions of the network to compensate for a lack
of central information (resulting in excessive bandwidth consumption, as occurred in the original
Gnutella), or have centralized parts of the network to reduce the amount of searching required (as
is the case in Kazaa and later versions of Gnutella).

A substantial amount of work has been done in addressing the problems of decentralized P2P
systems. One of the primary issues, scalability, has been approached by imposing organization
schemes on peers in the network in order to keep peers connected to the ‘best’ neighbors. Several
metrics have been used for this, such as social network properties [23] and peer bandwidth capacities
[7].

However, one issue pertinent to most of this work is the difficulty of performing realistic tests
of new systems (both in isolation and for comparison to existing systems). This difficulty is due
primarily to three issues:

1. Real-life P2P networks are often comprised of hundreds or thousands of users covering a wide
geographical area. With a new system (and thus without an existing user base), scaling a
test to realistic sizes is difficult, particularly if real machines are used to model the network.
One way to test P2P networks that has recently emerged is PlanetLab [21], a global wide-area
testbed of roughly a thousand machines freely available to researchers. While not as large
as many real P2P networks, PlanetLab is nevertheless a significant asset in evaluating a P2P
system on an actual network without resorting to a network simulator.

2. P2P networks are subject to a variety of exceptional occurrences and problems, including
network congestion, machine failures, and any other agents in the network that may interfere
with regular operations (such as firewalls). Accounting for all of these variables in a simulation
is difficult when using a network simulator, especially since some of these variables may be
unanticipated. Simulations conducted on a live network, while subject to the problems of scale
discussed above, deal with all exceptional cases of a real deployment, potentially resulting in
more realistic results.

10 CHAPTER 1. INTRODUCTION

3. User behavior is non-uniform and difficult to model, yet critical for determining a system’s real-
world feasibility. One effective way to model actual users is to employ actual user data, which
must be captured from an existing network and mapped onto a new system. Comprehensive
data of this kind has begun to emerge in recent years [12, 4]; however, we are not aware of
any large-scale efforts to use this data in the evaluation of new systems on realistic networks.
The use of such data, however, presents an opportunity to run more realistic experiments than
those that infer user data and/or behavior.

One approach to dealing with these problems is to create extensions on top of other systems; for
instance, Tribler [23] is implemented as a set of extensions on top of a standard BitTorrent client.
While granting access to a preexisting network of many users, this approach forces the system into
compliance with an existing system, which may not be desirable. Employing preexisting test data,
however, removes one of the hurdles to evaluating a brand new P2P design.

1.1 Goals

This thesis presents Kudzu, a new peer-to-peer file sharing system. The first goal of Kudzu is to
be completely decentralized; that is, every peer in the network is no more and no less important
than any other peer. Peers should be able to connect to the network through any other peer in the
network and should continue to function in spite of arbitrary network outages (down to the simplest
case of two peers communicating with each other). Peers should be able to form a new Kudzu
network or join an existing one with nothing other than the standard client.

The second goal of Kudzu is to have the network intelligently organize itself in the context of
total decentralization. This is roughly equivalent to saying that Kudzu must be efficient; inter-
peer communication should not be excessive and desired resources in the network should be located
quickly and easily. Kudzu should also display download performance comparable to leading P2P
systems by maximizing the use of available bandwidth while minimizing communication overhead
– this should demonstrate the potential of fully decentralized P2P systems to also display high
performance.

The third goal of Kudzu is to present a series of realistic simulations that allow us to draw
conclusions about decentralized P2P systems. The simulations should account for variability in
network and machine conditions and should reflect the behaviors of actual users, which provides
results more applicable to real deployments of the system. We carry out these tests using the
PlanetLab testbed and a set of real user data gathered from a Gnutella network.

1.2 Contributions

We present Kudzu, a new P2P file transfer system design that draws on successful ideas from
past and present P2P systems while addressing many of their individual shortcomings. Kudzu
aims to encompass high performance, reliable querying, and high efficiency, all within a completely
decentralized environment. We also present an implementation of Kudzu, which we use to evaluate

1.3. CONTENTS 11

the efficacy of our design and draw conclusions about decentralized P2P systems of this type. In
order to ensure that our results are applicable to a real-world setting, we employ a real-world
dataset and run our experiments on a wide area network of nodes. We demonstrate our system’s
performance in comparison to existing systems such as BitTorrent and our system’s ability to scale
to large numbers of peers. Finally, we describe our experiences during the process of designing and
building the system and discuss the ways in which we believe decentralized P2P systems stand to
be improved by employing intelligent, adaptive behavior.

1.3 Contents

The thesis is organized by chapter as follows:

Chapter 2 provides an overview of major, well-known P2P systems as examples of the varying
degrees of centralization, scalability, and capabilities in P2P systems today. We also provide an
overview of related work on improving these types of P2P networks, with particular attention
paid to systems aiming to be highly decentralized. This discussion frames the design choices
we made for Kudzu and the ideas we chose to incorporate into the system.

Chapter 3 describes the design of Kudzu, a file sharing system that aims to efficiently organize the
network and facilitate powerful query and download capabilities while remaining completely
decentralized. We describe Kudzu’s network structure, querying capabilities, and download
behaviors and the factors that led us to make our design decisions. We also describe the design
of our wide-area test harness that allows for realistic tests of the system.

Chapter 4 provides a technical overview of our implementation of Kudzu. We discuss the mes-
saging framework for communication between Kudzu peers and the way in which information
is encoded. As experiments on wide-area networks are often significantly more nuanced in
practice than in theory, we also discuss relevant technical details behind our test harness and
our coordination of large numbers of machines in order to run cohesive tests.

Chapter 5 presents our empirical results from running experiments on Kudzu using our test har-
ness. We discuss the conclusions that can be drawn from our results as well as their potential
applications to other types of P2P networks.

Chapter 6 provides an overview of our work and discusses future work on the system. We also
detail several aspects of P2P systems that we did not explore in depth and discuss how they
could be incorporated into future versions of the system.

Chapter 2

Background

2.1 Networking Paradigms

Traditionally, approaches to building large-scale networked systems have been dominated by a client-
server approach, in which a service is provided to a user base exclusively by a few centralized servers.
This type of approach is natural to consider at first – it is simple to design and implement, since
all information is processed centrally, and easy to control, as the whole service is contingent on the
small, pre-designated set of server machines.

There are a variety of drawbacks, however, to the standard client-server approach. Perhaps the
greatest is the difficulty of scaling up to a large user base. Since the set of servers is effectively
statically serving a dynamic (and often growing) number of users, the load of each server is liable to
continuously increase. Once the servers’ capacity is reached, new servers must be added; this adds
the cost of installing new hardware, the complexity of running more servers in parallel, and a greater
chance of a server failure, leading to possible service outages. Of course, the risk of server failure
is always present in a client-server approach, and is another significant problem with the paradigm.
The servers are inherently a central point of failure for the model; if the servers go down, the service
is immediately and completely shut down. The addition of failover servers can alleviate this issue,
but is still only a temporary solution to a problem that may still present itself if the user base grows
large enough or a significant enough failure occurs.

While the client-server model has dominated networked systems since the dawn of the Internet,
a new paradigm has emerged relatively recently in the form of peer-to-peer (P2P) networks that
promises to address the problems of the client-server model. A P2P network may loosely be defined
as a network in which communication occurs not between users and a centralized server but directly
between the users of the service. This has several immediate advantages: with the elimination of
servers comes not only the removal of the central points of failure but also a (theoretically) infinite
capacity, as adding more users to the network not only increases the demand on the network but the
bandwidth and computational capacity available to it. Diagrams illustrating typical client-server
and P2P architectures are shown in Figure 2.1.

12

2.2. P2P PARADIGMS 13

Figure 2.1: Client-server network (left) and peer-to-peer network (right).

2.2 P2P Paradigms

A peer-to-peer system has been used as an umbrella term to refer to many types of systems that
adhere in varying degrees to the description of a “pure” P2P system given above. Rather than
attempting to enumerate every point along this spectrum, it is most informative to consider several
of the most popular and well-known P2P systems that have emerged (and in some cases, dissolved) in
recent years. Though these all have been widely accepted as examples of “P2P systems”, they vary
significant in their technical underpinnings, and each represents a distinctive approach to designing
P2P systems.

The core purpose of the systems that we consider here is the transfer of files. A P2P file transfer
is generally a two-step process: first, a desired file must be located on the network (querying), and
second, the file itself must be transferred (downloading). These two functions can be separated fairly
naturally, since locating and transferring the resource are non-overlapping tasks. As a result, some
systems focus on one function or the other while mitigating or ignoring the other completely. The
most notable instance of this is BitTorrent, which by design facilitates downloads only and provides
no function to query for files. Our discussion will take into account both the query and download
aspects of these systems – though the lack of one or the other is not exactly a deficiency, we are
ultimately interested in an integrative system that performs both functions.

2.2.1 Napster

Probably not coincidentally, the first popular P2P system that emerged was also the furthest from
the true P2P paradigm, as it possessed considerable similarities to a client-server architecture. This
was Napster, which allowed its users to exchange music files directly with each other1. Napster was
indeed a P2P system in the sense of having users connect directly to each other; however, it relied
on a central server to match users together who wished to exchange music with each other. When

1Note that the Napster we refer to here is the original (circa 2000) incarnation. While a service with the Napster
name still exists, it is unrelated to the original and not relevant to our discussion.

14 CHAPTER 2. BACKGROUND

Figure 2.2: Example Napster network.

a peer wished to find a file, it contacted the central server, which looked up which peers had the
desired file, then instructed the requester to connect to those peers. This system has significant
scalability benefits, as the server’s role was effectively limited to serving only as a catalogue that
users queried to determine appropriate peers with which to connect However, the single point of
failure remained, as the entire network relied on Napster’s central server to find out where other
peers were located and what files they had to share. An example Napster network with four users
(and arbitrary inter-peer connections) is shown in Figure 2.2.

Napster’s central point of failure proved to be its downfall. After a series of lawsuits filed against
the network alleging copyright infringement [2], a court order forced Napster to shut down the
central server – and with that, the Napster P2P network disappeared overnight. While this was an
artificially imposed outage rather than a technically related one, it illustrated many of the problems
behind Napster’s architecture that were inherited from the client-server paradigm. Napster was
succeeded by several P2P systems that addressed many of its problems.

2.2.2 Kazaa

The Kazaa system came into popularity around the same time as Napster, but was closer to a
‘pure’ P2P system than Napster, and as such was not subject to many of Napster’s problems. A
Kazaa network does not maintain a single central repository of content information, as Napster
did. Instead, each peer is assigned to be either a regular node (RN) or a ‘supernode’ (SN). Each
supernode is responsible for a set of regular nodes and maintains all file information for those nodes
as well as connections to other supernodes [16]. Thus, the supernodes function as mini-servers of
sorts, performing distributed file lookups over the entire network. The network ends up shaping
itself into a tree, with ordinary nodes as leaves attached to supernodes above them. File queries are

2.2. P2P PARADIGMS 15

Figure 2.3: Example Kazaa network with three supernodes.

directed to the node’s supernode, which then may forward the query onto other supernodes, thereby
searching some subset of the network. As in Napster, once a file sender and receiver is determined,
a direct connection between the two is opened to perform the transfer, as shown in Figure 2.3.

Since the supernodes are dynamic and constantly changing, the network will continue to function
if individual nodes or sets of nodes are taken offline. However, the Kazaa architecture introduces
several new issues. Maintaining a useful set of supernodes imposes network overhead – if the set of
supernodes is poor (for instance, if the supernodes become overloaded or have too little bandwidth
to begin with), the network will function sub-optimally. Additionally, nodes have no control over
when they become supernodes, which is troublesome from the perspective of fairness when a user’s
machine suddenly becomes a mini-hub for the network and begins to route a large amount of traffic
for other users. However, the specifics of Kazaa’s protocol (called FastTrack) are proprietary and
not entirely known [33], so Kazaa is generally less understood than the other systems described here.

2.2.3 Gnutella

The purest well-known P2P system we discuss here is that of Gnutella. A Gnutella network closely
resembles our original description of a P2P systems – the network is functionally homogeneous, so
unlike the other systems discussed, there are no peers that can be considered servers of any kind.
Functionally, it operates fairly similarly to a Kazaa network, in that nodes search for files by querying
their set of connected peers, which in turn forward to their connected peers, and so forth, up to a
maximum number of hops. If a peer receives a query matching one of its files, it connects back to
the requester and starts the transfer [7].

In this pure form, a Gnutella network is clearly unscalable, as the load on each node grows
linearly with the number of queries (which increases as the network grows in size). While this may

16 CHAPTER 2. BACKGROUND

seem manageable at first glance, note that this means the total amount of traffic the network has to
handle grows exponentially; each new node has to handle each new query, resulting in more and more
bandwidth used as the network grows. An analysis of early Gnutella bandwidth usage estimated
that in a Gnutella network with as many users as Napster in its prime, the network might have to
expend as much as 800 MB handling a single query [25]. The same analysis continues on to conclude
that the same network as a whole would have to transfer somewhere between 2 and 8 gigabytes per
second in order to keep up with demand. While many assumptions are used in order to arrive at
these measurements, the scale of the results alone is enough to raise questions about the viability of
a large Gnutella network.

While scalability is problematic for a Gnutella network, however, the network also possesses many
positive qualities. For one, it is extremely robust to node failures and changes in network topology
and requires very little organizational overhead [11]. Furthermore, the query model is quite powerful;
queries are routed from node to node and each individual node is left free to match their files against
queries in any way that they wish. This means that arbitrarily powerful matching algorithms can
be used as drop-in replacements to the network to improve query results. The compromises that
other systems make away from a Gnutella-like query approach typically sacrifice flexibility in order
to achieve better network efficiency and scalability.

While early versions of Gnutella adhered to the fully decentralized model described above, later
versions of Gnutella introduced ‘UltraPeers’, which are high-capacity peers similar to Kazaa’s su-
pernodes. UltraPeers alleviated the unscalable query load on most peers by handling most of the
query traffic for the entire network. UltraPeers maintained connections to many (typically around
32) other UltraPeers, thus allowing regular nodes to maintain only a few connections to UltraPeers
and shielding them from the majority of queries passing through the network. Most properties of
Kazaa previously discussed can be applied to an UltraPeer-era Gnutella network. We are mostly
interested in Gnutella as an example of a fully decentralized network, and so generally refer to
‘Gnutella-like’ networks as loosely organized networks in which any centralization is kept to an
absolute minimum.

2.2.4 BitTorrent

Lastly, we discuss BitTorrent, which is important not only because it represents a unique approach
to P2P downloads but also because it is one of the most successful mainstream P2P systems today
and is rapidly growing in use [3]. BitTorrent functions not as a single large network but as a large
number of small networks, each controlled by a tracker. Each tracker is setup to transfer a single
file among all peers connected to its network (this set is called a ‘swarm’), and new peers join by
contacting the tracker. Since every peer connected to the tracker is interested in sharing (‘seeder’
nodes) or downloading (‘leecher’ nodes) the same file, transfers can be conducted efficiently in a
distributed, block-by-block fashion. An example BitTorrent network is shown in Figure 2.4.

While trackers themselves do not represent a particularly serious central point of failure due to
the number of trackers in use and the ease of starting a new tracker, trackers are still a problem for
several reasons:

2.2. P2P PARADIGMS 17

Figure 2.4: Example BitTorrent network with two seeders and three leechers.

• A file can only be shared if someone has actively set up a tracker to share that file. This is
in contrast to the other systems, in which it is only necessary for someone on the network to
possess the file in question. This means that a file will only be transferred if both the uploader
and downloader have decided it is worthwhile to share. However, there is no obvious incentive
for the uploader to start up the tracker vs waiting for someone else to start one, so the net
result will be many files that may have interested downloaders but no trackers and thus no
one to upload.

• The file required to locate a particular tracker must be acquired externally (a ‘torrent’ file,
or simply torrent), since having the file is a prerequisite to joining the BitTorrent network.
Typically, tracker files are downloaded from web repositories that serve the dual function of
housing tracker files and locating trackers for a desired file (another function that cannot be
built into a BitTorrent network). This, however, introduces another dependency and possible
point of failure into the network. Many of these tracker sites have come under litigation
similarly to the original Napster service [20].

Furthermore, because each BitTorrent network exists to transfer a specific file, BitTorrent net-
works possess no search capabilities at all. This is one of BitTorrent’s significant weaknesses vs
Gnutella, which allows search engine-like queries across the network to find relevant files without
resorting to an external service (e.g., Google) to locate a torrent file. Of course, one might ask why
this is something to be avoided; a search engine like Google employs highly sophisticated search
algorithms and is adept at finding desired files. There are a few problems with using a third party
like Google for searches, however. One is that since the torrent file does not contain the actual file
itself, the only indication of what’s contained in the torrent is the torrent filename (which may be
misleading). A larger problem is that finding a torrent file does not equate to finding an active

18 CHAPTER 2. BACKGROUND

Centralization Query Model Scalability Overhead

Napster High; central server Direct server lookup High Low

Kazaa Moderate; SuperNodes Query flooding Moderate Moderate

Gnutella Low (pre-UltraPeers) Query flooding Low Low

BitTorrent Moderate; trackers N/A High Moderate

DHT Low Direct lookup (exact) High High

Table 2.1: Overview of P2P network paradigms.

network – many torrent files point to old networks that have gone dormant and no longer have any
uploaders sharing the file. This means that finding a network with enough (or any) uploaders to
obtain a file may be more difficult than simply making a Google search and downloading the first
torrent file found.

2.2.5 DHTs

One final type of system that bears mention is a Distributed Hash Table (or DHT). DHTs, while
not complete P2P systems in the same manner as the others described here, are distributed lookup
tables that can serve as backbones for P2P networks, performing efficient O(log n) file lookups across
data distributed amongst the nodes in a network. DHTs typically organize their nodes in a structure
that indexes a subset of the other nodes and allows particular pieces of information to be retrieved
without traversing most of the network. DHTs themselves are an active field of research with many
well-known and highly studied systems such as Chord [31], CAN [24], and Pastry [27].

DHTs have also been proposed for use in P2P systems. Some BitTorrent clients possess ‘track-
erless’ operation modes in which a DHT is used in order to allow the network to function without
a tracker [18]. However, the use of DHTs in P2P systems is far from an ideal solution. Chawathe
et al [7] outline several of the problems of using DHTs in a P2P network. One issue is the high
degree of churn in a typical P2P network. Since DHTs are highly structured, there is significant
overhead incurred when nodes are added or removed from the network. In a typically P2P network,
peers are frequently entering and leaving, and this will imposes a significant maintenance burden
if a DHT is in use. Another issue is that while DHTs perform exact match queries very well, they
generally cannot perform keyword searches. Users will often not know the exact file they wish to
locate, so the sacrifice of keyword searches is seriously detrimental to the network. Also note that
in the specific example of BitTorrent, DHTs also do not alleviate the problem of needing to find a
torrent file before joining the network. Finally, [7] argues that since most requests in P2P systems
are for highly replicated files, precise DHT lookups are unnecessary.

An overview of the properties and tradeoffs of each of these network types is given in Table 2.1.
While there are many specific P2P networks other than the ones listed, we feel that the 5 discussed
above typify the majority of P2P systems in use today.

2.3. PROPERTIES OF P2P NETWORKS 19

2.3 Properties of P2P Networks

The P2P designs discussed above vary widely in their comparative advantages and disadvantages.
Some of these properties are closely tied to the high-level system design, whereas others are more
flexible and have been explored by previous researchers. We discuss related work involving some of
these properties below.

2.3.1 Scalability

As previously discussed, scalability is primarily a concern in a Gnutella network (and, to a lesser
degree, in a Kazaa network). Gnutella captures the benefits of true decentralization but eschews
the scalability gains of using a central catalog (as in Napster), a tiered structure of supernodes (as
in Kazaa), or a series of small, self-contained networks (as in BitTorrent). Creating a truly scalable
Gnutella-like system would have the potential to yield a system that eclipses all existing approaches.

Query Approaches

Since the number of queries is the most significant factor in scaling a Gnutella-like system, one
approach to improving scalability is to adjust the manner of query forwarding from the standard
flooding-based approach [11]. Gia [7] replaces flooding with a random walk biased towards high-
degree nodes. Additionally, it employs one-hop replication of file data, meaning that each peer
has knowledge of not only its own files but those of its neighbors. This type of approach may be
used to reduce the need to employ complete flooding or low query TTLs while still affording a
high probability of finding files on the network. Ges [34] takes an approach similar to Gia in using
a random walk and one-hop replication but biases the walk based on node capacity rather than
performing Gia’s topology adaptations; this has the useful effect of controlling which nodes receive
the majority of queries.

Work has also been done in merging flooding-style queries with more sophisticated techniques.
Loo et al [19] propose a hybrid search approach consisting of flooding for well-replicated (that is,
popular) files and DHT searches for rare files by only pushing rarer files into the DHT, thereby
reducing the overhead of maintaining the DHT (which is much higher than simple flooding). Their
rationale stemmed from measurements suggesting that Gnutella is good at finding well-replicated
content, but often fails to return matches on rarer files, even when the network does contain peers
with matches.

Social Networking Influences

Other attempts to scale decentralized systems have focused mostly on organizing the network in such
a way that peers with similar interests are joined closely together. Prosa [6] leverages similarities
in peer files and queries to build specific types of links between peers depending on the contact
and interests shared between them — initially only ‘acquaintance links’, as peers communicate and
display shared interests through queries and files the links change to more powerful ‘semantic links’.
The product is tightly bound social groups that allow rapid query propagation to those peers likely

20 CHAPTER 2. BACKGROUND

to respond. Tribler [23] adds a more active, user-involved facet to building social networks in a P2P
system by allowing users to give themselves unique IDs and then specify other users to favor and
draw information from in recommending files and forwarding queries. The implicit trust in this sort
of social network derived from out-of-band means also allows various performance improvements
(see Section 2.3.3).

Machine Learning

A lesser explored way to build links between peers likely to exchange files in the future is to employ
local machine learning algorithms to measure the usefulness of a connection to a particular peer. One
approach proposed in [5] builds a classifier for neighbor suitability using support vector machines
(a standard machine learning classifier). Using the query, file, and prior query match information
from a small random selection of nodes in the network as training data, the algorithm predicts a
small number of features (in this case, words) that are representative of the types of files the peer is
interested in. Using machine learning allows the classifier to learn subtle but useful features likely
to be missed by other approaches — for instance, the world ‘elf’ is likely to be an important feature
for a node making queries for ‘Tolkien’ or ‘Return of the King’, even though ‘elf’ does not appear in
either query. The small set of resulting features is used to predict good neighbors for future queries
based on their file stores, without any input on preferences required of the user.

We were intrigued by this approach to solving the problems of decentralized networks through
intelligent network organization. The simulator results given in [5] suggested that the potential of
network organization to improve query performance was high. One of our goals was to determine
whether this type of strategy would be effective in practice. We predicted that both heavy-weight
machine learning approaches and lighter ML-derived approaches could be used to improve the per-
formance of Gnutella-like querying in a decentralized network.

2.3.2 Incentives

One factor that has been instrumental to BitTorrent’s success has been its incentive model, in which
peers who are more generous uploaders are rewarded with improved download speed and selfish
uploaders are punished with reduced download speeds [8]. P2P file transfer systems are inherently
plagued by the problem of selfish peers (also known as ‘free riders’), as they rely on (relatively)
anonymous cooperation and donations of files and bandwidth in order to function well. Studies of
free-riding on Gnutella demonstrated that nearly 70% of participants on the network were free-riders
and roughly half of query responses came from the top 1% of sharers [1]. Even BitTorrent is not
immune to the problem; the BitThief [17] system demonstrated that a fully free-riding client could
achieve comparable download speeds to official clients, implying problems with BitTorrent’s incentive
model. Other work has been done in enforcing fairness through a trusted third party – AntFarm
[22] manages block downloads through the exchange of tokens issued by a trusted server which
are difficult for ordinary nodes to forge. AntFarm also leverages the token servers to manage and
improve transfer speeds by viewing sets of download swarms as a bandwidth optimization problem.

Work has also been done on the price of selfishness in a Gnutella-like setting. [4] examines the

2.4. SUMMARY 21

impact of reasonable self-interest in P2P networks from a game-theoretic perspective compared to
altruistic behavior. The same work also proposed methods for peers to organize themselves so as to
result in greater numbers of query matches. The ease with which intelligent network organization
fits into a incentive-based model is one reason it shows promise for use in real systems.

2.3.3 Download Performance

Performance by itself is largely a secondary problem to scalability and is typically easier to address.
Actual download speeds stem primarily from the number of peers from which downloads can proceed
simultaneously. BitTorrent’s model is close to ideal in this case, since everyone who has the file and
is willing to share it is found effectively instantly. Assuming only modest delays in query propagation
as a request travels from one end of the network to the other, a Gnutella network may be trivially
modified to achieve ‘optimal’ performance by simply removing the max hop count on queries. Since
this has the effect of drastically increasing the total number of queries propagating throughout the
network, it reformulates the performance problem as a scalability or network organization problem.
Total (rather than individual) download speeds on the network are a more complex issue but will
still generally depend on the organization of the network and any incentive algorithms in effect.

Several proposed performance enhancements have made use of the incentive model or network
organization. Collaborative downloading refers to the use of extra peers in a file transfer (i.e.,
neither the requester nor the original file holder) to increase available bandwidth by distributing
the transfer over more peers. This requires altruism on the part of the helper nodes; Tribler [23]
leverages the implicit trust in its social networks to implement the 2Fast collaborative download
protocol. Collaborative downloading could probably also be applied to other, more anonymous
types of incentive models.

Finally, actual observed performance in BitTorrent-like networks is heavily influenced by a large
number of parameters and various settings that may have impacts ranging from minor to significant.
While we do not investigate the particular effects of varying these settings, P2P clients in real
networks finely tune these parameters to maximize the absolute performance observed by their
users.

2.4 Summary

In recent years, P2P systems have gradually moved further away from the traditional client-server
model towards a fully decentralized model in order to realize the benefits of scalability, cost, and
performance possible. However, technical and scalability roadblocks have prevented the widespread
adoption of truly decentralized systems in favor of systems such as BitTorrent, which sacrifice robust-
ness and decentralization in favor of efficiency. Using intelligent network organization to compensate
for decentralization, however, poses one approach to building a system that merges the benefits of
a system like BitTorrent with a system like Gnutella. P2P file transfer systems stand to improve
dramatically once the intersection of these two types of systems is realized.

Chapter 3

Kudzu: An Adaptive,

Decentralized File Transfer System

Work on this thesis presented two general design challenges. The first was designing the Kudzu
system itself; in addition to being completely decentralized, it needed to be efficient, scalable, and
practical to implement. The second was designing a realistic testing framework for evaluating the
performance of the system. While we built the testing framework in the context of evaluating Kudzu,
there is nothing that inherently ties the framework to Kudzu, nor to our specific testbed, and the
issues we faced designing a distributed testing platform are applicable to many types of distributed
systems. Likewise, the decisions we made with respect to Kudzu itself are widely applicable to other
P2P systems. This chapter discusses our design goals and decisions comprising both Kudzu and our
test harness.

3.1 Design Goals

At its core, Kudzu is a P2P file transfer system. As with any such system, the overarching goal is
to enable users of the system to locate and transfer desired resources spread out across many users
with as little overhead as possible, both on the part of the user (complicated searches or excessive
waiting) and the system itself (computational and bandwidth overhead). Within this context, we
designed Kudzu according to the following core principles:

1. The system must be fully decentralized; that is, every agent in the network is equivalent as
far as network functionality is concerned. The removal of any piece of the network should
not impede the capabilities of the remaining network, and the removed piece should remain
a fully functional network itself. As discussed in Chapter 2, most successful P2P systems in
the past have made decisions that violate this goal by introducing some form of centraliza-
tion. As we were specifically interested in exploring fully decentralized networks, the goal of
decentralization was paramount in Kudzu and taken as a given for the rest of our design.

22

3.2. NETWORK STRUCTURE AND QUERIES 23

2. The system should scale to networks of arbitrary size. More specifically, the system should not
degrade even when a network of only a few peers is scaled up to one with many. Real-life P2P
networks often span hundreds or thousands of simultaneous users and can only be expected
to grow; as such, scalability is a highly important concern of any P2P design. Moreover, the
system should effectively leverage the resources of its peers. In other words, peers should be
able to reliably find desired resources located in unknown locations on the network. This goal
was especially interesting to consider in the context of our first goal of decentralization.

3. The system should provide the keyword searching capabilities of a network like Gnutella while
also providing download capabilities comparable to a high-performance network like BitTor-
rent. Gnutella provides a flexible search platform in which to locate files on the network, but
suffers from scalability problems (as discussed in Section 2.2.3). BitTorrent, in contrast, scales
very well while maintain high speeds, but provides no search capabilities. We wish to provide
both of these functions while mitigating their downsides through the use of efficient network
organization.

4. The system should be feasible to implement and evaluate under live conditions. Especially
given that Kudzu is a system designed from scratch rather than an extension built on top of
an existing system, it was important to consider how the system could be empirically evaluated
under realistic usage. This requirement led to the design of the testing and data gathering
harness.

3.2 Network Structure and Queries

A Kudzu network is comprised of a set of connected peers identified by IP address. Each pair
maintains a number of two-way connections to other peers in the network. Communication in the
network may be visualized as exchanging messages along edges (peer connections) in an undirected
graph. Loops (that is, connections to oneself) are disallowed. Each peer is capable of accomplishing
every function of the network, thus making every peer itself a fully functioning Kudzu network. Of
course, a node with no connections will have no one to exchange files with and thus is not useful. In
practice, however, a Kudzu network must be bootstrapped by starting one or more nodes in isolation
and having other peers subsequently connect. Since all connections in the network are bidirectional,
the bootstrapping node will then participate in the network exactly as the other nodes do.

3.2.1 Query Behavior

In order to locate resources on the network to download, Kudzu nodes send out queries along their
connections. As in a standard Gnutella network, queries are sent along all of a node’s connections,
and the recipients then forward the query along all their connections except for the one on which
the query arrived. This process continues until queries have been forwarded a specified number of
hops, at which point receiving nodes stop forwarding the query. This maximum time-to-live (TTL)
assigned to every new query is specified as a global constant. When a node receives a query for

24 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

which it has matches (as detailed in Section 3.2.2), the node sends a response back to the node who
generated the query. Note that although answering a query may involve opening a new connection,
this does not change the set of connections along which the node forwards queries. Furthermore, a
query is always forwarded regardless of whether the peer matched the query (so long as the TTL is
nonzero). We refer to the node that originally sent a query as the query’s requester and all nodes
that return matches to the query as the query’s responders.

It is easy to see that both the maximum TTL and the network’s average node degree (the average
number of connections per peer) play a major role in the exhibited behavior of a Kudzu network
(or any other type of flooding-based network). Let c be the number of connections per node and
k be the max TTL. Assuming a fairly random network structure, a query will have encountered c

nodes after the first hop, c(c − 1) nodes after the first two hops (since queries are not forwarded
backwards along the links they arrived), and c(c− 1)n−1 nodes after the first n hops for all n ≤ k.
Thus, a query will reach at most c(c−1)k−1 nodes regardless of the total size of the network. Users,
of course, would like their queries to reach the entire network, as this will return the largest possible
set of results. Let’s explore this possibility for a network of total size N . Solving for the TTL k

gives the following:

N = c(c− 1)k−1

lnN − ln c = (k − 1) ln (c− 1)

k = 1 +
lnN − ln c
ln (c− 1)

Thus, for a modestly sized network of N = 1000 nodes with c = 3, this gives us k ≈ 8.4, or 9 hops
(on average) to reach every other node in the network. While this may seem manageably small, the
number of nodes reached is exponential in k; this means that the corresponding query load induced
on every node is also exponential in k for sufficiently large N . Thus, if we allow N to be arbitrarily
large (which we want to do to be sure that the network will scale), minimizing k is paramount to
keeping the network from being overloaded by query traffic. This is why a relatively low max TTL
is important. In early versions of Kudzu, we experimented with removing the TTL and found the
resulting network to be not only heavily loaded but extremely inefficient (described in Section 5.3).

3.2.2 Keyword Matching

One of the benefits of the gossip-like queries in unstructured networks such as Kudzu or Gnutella
versus arguably more efficient queries in systems based on DHTs is that the former allows keyword
searches, while the latter is restricted to exact lookups. Keyword searches allow for a great degree
of flexibility in the way query matches are actually determined, which translates into more powerful
search capabilities for the end user. In a keyword search, the recipient of a query receives a set
of keywords and is free to use any arbitrarily simple or complex algorithm to determine the set of
matching files. For Kudzu, however, we were primarily interested in the organization of the network
and opted for the simple matching algorithm of matching a file to a query only when every keyword

3.3. NETWORK ORGANIZATION 25

in the query is a substring of the filename. This is also the standard approach used by some versions
of Gnutella. For example, a query for “ring lor” will match a filename “lord of the rings”, since
both keywords are contained in the filename, but a query for “ring lore” will not. Matching is case
insensitive and discards punctuation and all occurrences of standard stopwords (e.g., “the”, “of”)
and topical stopwords (e.g., “mp3”). Both types of stopwords are common enough in practice that
queries end up returning so many matches to render the query useless at the network’s expense. Our
complete keyword matching procedure is given in Algorithm 1 for query string Q, filenames F , and
stopwords S. Note that the matching algorithm can be made arbitrarily complex without impacting
other parts of the system.

Algorithm 1 Keyword Substring Matching
Require: Q, F = {f1, f2, . . . , fa}, S = {s1, s2, . . . , sb}
M ⇐ {}
K ⇐ tokenize(Q) \ S
for all f i in F do
add⇐ true
for all kj in K do

if not substring of(kj , f i) then
add⇐ false
break

end if
end for
if add then
M ⇐M ∪ {f i}

end if
end for
return M

A straightforward implementation of the algorithm is effectively linear in the number of files
on the node, since the number of keyword tokens per query is almost always small (less than 10).
The same policy can be implemented more efficiently using more complex data structures such as
suffix trees [26], but we did not focus our attention on optimizing local node operations and did
not encounter any CPU-related bottlenecks. A variety of other matching policies may be employed
as well (such as matching prefixes rather than substrings), but we found that keyword substring
matching was perfectly sufficient for our needs.

3.3 Network Organization

We discussed in Section 3.2.1 how allowing queries to propagate without limit makes the network
unscalable to large sizes, as adding new peers increases not only the global query load but each node’s
individual query load. Query load – specifically, the bandwidth necessary to handle all query traffic
through a node – was the primary factor in Gnutella’s shift from a fully decentralized network to
one with many local, high-capacity hub nodes (‘Ultrapeers’) that handled the vast majority of query
traffic for the entire network [30]. This system allowed queries to traverse a much greater portion of

26 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

the network without requiring large numbers of connections or excessive query hops through ordinary
peers. However, this system placed a much heavier, involuntary burden on those nodes chosen to be
ultrapeers: ultrapeers maintain a much larger number of connections to other ultrapeers than other
nodes do (roughly 32). This compensates for the exponential TTL behavior by allowing the TTL
to be set relatively low while still covering a very large number of nodes.

So far, we have framed the issue of network organization only by discussing the portion of the
network that each query can cover. However, we note that node coverage is not the metric that we
actually wish to maximize; in contrast, what is actually relevant is the number of matches retrieved.
For a given query Q, there are likely to be only a small number of possible matches in the network,
which furthermore are likely to be distributed across only a very small subset S of the network. We
wish to maximize query recall, which we define as the ratio of the number of matches returned
by the network to the total number of matches possible. The total number of possible matches,
of course, will be equivalent to the number of matches returned if queries reach every node in the
network. However, we can also achieve the optimal recall of 1.0 if each query only reaches those
nodes that can actually match it. In fact, this is much better than the former ‘optimal’ case, since
this latter case means that recall is maximized while communication overhead and bandwidth usage
is minimized.

We thus consider the problem of network organization as finding a process of connecting nodes
such that we achieve high query recall while permitting a low TTL value; in other words, while
covering only a small portion of the entire network. We approach this problem by first defining a
simple framework for these processes, which we refer to as organization policies.

3.3.1 Organization Policies

In order to evaluate multiple organization approaches easily, we separate policy from mechanism
using the idea of an organization policy. An organization policy specifies how a node chooses its
peer connections and consists of an optional initialization procedure and the following two operations:

• chooseNewPeer(existingPeers): This operation takes as input the set of currently connected
peers and returns a single new peer to which the node should connect, or none to stay with
the current set of peers. The policy may use any algorithm to choose the new peer, although
it must not be contained in the existing peer set.

• chooseExcessPeer(existingPeers): This operation takes as input the set of currently con-
nected peers and returns a single peer from existingPeers from which the node should dis-
connect, or none to stay with the current set of peers. As with chooseNewPeer, there are no
restrictions on how the policy chooses the peer other than it being one to which the node is
currently connected.

Recall that the two values determining average query coverage are the max TTL and the average
degree of each node. For any organization policy, increasing either of these values is guaranteed to
improve (or not affect) recall, though at the expense of bandwidth. To be able to compare different
approaches effectively, we choose to fix the average node degree across all approaches and observe,

3.3. NETWORK ORGANIZATION 27

for a particular approach, how the network operates across varying TTL values. Let MIN and
MAX be two variables fixed across all nodes in the network (they may have the same value) and let
C be the current set of connections for some node n. For any organization policy p, the following
two statements are always enforced: if at any point |C| < MIN (this could be due to a network
failure, neighbors terminating connections, or any other reason), then the node will repeatedly call
chooseNewPeer at short intervals until |C| ≥ MIN . Likewise, if at any point |C| > MAX, the
node will repeatedly call chooseExcessPeer until |C| ≤ MAX. Since p may choose to return
none for either of these operations, the size of C may remain outside of the range [MIN,MAX]
(depending on p), but will usually return to within the range (the particulars are left to the policy).
Finally, we impose one additional restriction: peers that are newly connected are given a brief
period of immunity from being disconnected. This is to prevent situations in which a node joins the
network by way of an overconnected node only to be immediately disconnected before it can query
for additional (less connected) peers. Given this framework in which organization policies operate,
we now detail the specific policies that we explored for Kudzu.

3.3.2 Naive Policy

This represents the simplest ‘realistic’ policy, and was the one we initially applied to Kudzu. Simply
choose peers randomly from available peers so as to maintain a valid number of links. Likewise, peers
to disconnect are chosen randomly from the current set of connections. Real networks in which no
particular organization is used will operate in a similar way, since peers will join at public entry
points and then find other peers to add to the connection set through the entry node.

• init: Seed with one ‘known’ peer to form the first connection. This is akin to a real network in
which a small set of public, permanently active nodes are hardcoded to act as potential entry
points.

• chooseNewPeer: Choose an existing peer at random. If no such peer exists (that is, |C| = 0),
return none. Otherwise, send a request to the chosen peer for MIN additional random peers.
Randomly choose one of the returned set of peers that are not already in C and return it, or
return none if no such peer exists, which may be the case if the chosen peer did not have MIN

peers to send.

• chooseExcessPeer: Choose and return an existing peer at random.

3.3.3 Fixed Policy

A fixed policy is one in which we pre-select the node’s connections and it simply attempts to maintain
the connections specified. The given connections may be determined randomly or by some other
process (we used several fixed policies in our tests, which we describe in Chapter 5). In realistic
usage, of course, a policy such as this is useful for little more than bootstrapping, and it is unlikely
that good general-case performance can be obtained from such a policy.

• init: Seed the policy with a list L of predefined peers.

28 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

• chooseNewPeer: Choose and return the next peer in L to which the node is not presently
connected. If every peer in the list is presently connected, return none. This has the effect of
simply populating the node’s available connections with the peers that were initially given to
the policy.

• chooseExcessPeer: Choose and return an arbitrary currently connected peer that does not
appear in L. Return none if no such peer exists. Note that since a fixed policy ignores the
settings of MIN and MAX, keeping the number of connections within this range must be
done when the L is decided upon.

3.3.4 TF-IDF Ranked Policy

We now consider a more sophisticated organizational approach. An ‘optimal’ policy is one that
chooses peers most likely to match future queries that the node sends. One way we can approximate
an optimal policy is by choosing peers whose files most resemble our queries. If a peer’s files match
our queries exactly, then clearly that peer is a good neighbor to choose. We calculate these matchings
by employing a vector space model. A VSM is an algebraic model for representing and comparing
objects formulated as vectors of identifiers – in this case, the objects we represent are documents
built from a node’s files or queries (or potentially both).

Let’s consider a node i. We define two ‘documents’ for each node: a file store Fi, which is
comprised of all words in the node’s filenames, and a query store Qi, which is similarly comprised
of all words in the node’s queries. Let Wi = Fi ∪ Qi and let W =

⋃
iWi be the global set of word

tokens. We can represent each Fi or Qi as a vector ~v of size |Wi| in which each entry vw represents
a specific word token in Wi. Given two document vectors ~vi and ~vj , we can calculate their shared
relevancy by using the cosine similarity metric:

cos θ =
~vi · ~vj

||~vi|| ||~vj ||

This will be a value from 0 to 1 representing how relevant the documents are to each other: a
value of 0 means they share no tokens in common and a value of 1 means they are comprised of the
same tokens.

To calculate the vector weights, we use a well known statistical measure called term frequency-

inverse document frequency [28]. TF-IDF calculates the importance of a word in a document
or collection of documents, thus providing us with weights needed to determine the cosine similarity
as given above. As the name suggests, TF-IDF attempts to account for two primary properties:

1. Words that appear many times in a document are more important than those that do not
(term frequency). Clearly, if a term appears frequently, it is likely to be more relevant to the
overall content of the document.

2. Words that appear in many documents are less important than those that are rare (inverse
document frequency). If a term appears in most documents, it is likely a word that does not

3.3. NETWORK ORGANIZATION 29

impart specific information about those documents. This will include, for example, common
language words that have nothing to do with content (e.g., ‘a’, ‘the’).

The term frequency is normalized to the document length, since we do not wish to assign higher
weights to documents that are simply larger. Thus, for a term wi in document dj with frequency
fi,j , we have the term frequency as follows:

tfi,j =
fi,j∑
k fk,j

For the inverse document frequency, we need to consider the entire document corpus D =
{d1, d2, . . . , dx}. For a term wi, we take the logarithm of the total number of documents over
the number of documents containing the term:

idfi = log
|D|

|{d : wi ∈ d}|

Note that assuming each node has complete information about all other nodes, the inverse
document frequency is the same for any given term across all nodes. Finally, to calculate the
TF-IDF, we simply multiply the two components:

tfidfi,j = tfi,j × idfi

Using this to calculate the vector weights used in the cosine similarity computation, we end
with a measure from 0 to 1 of the similarity between two file and/or query stores. Returning now
to the problem that led to this discussion, we can use TF-IDF and cosine similarity to design our
organization policy as follows:

• init: Bootstrap with a preset entry peer as in the naive policy.

• chooseNewPeer: For each potential peer, calculate the TF-IDF between this node’s file store
and the potential peer’s file store. In using this node’s file store, we are making the assumption
that there is a correlation between a node’s files and the queries it issues; work done in [4]
suggests that this holds in practice. Rank the peers by TF-IDF and return the highest-ranking
peer not already in the connection list. If no known peer exists not already in the connection
list, return none.

• chooseExcessPeer: Repeat the ranking procedure described in chooseNewPeer and return
the lowest-ranked peer from the list of existing connections other than the peer that just
arrived.

Note that in determining the ranking, we could have compared the potential peer’s file store
to the node’s query store rather than its file store. While a stronger correlation is likely to exist
between queries and the files of good potential peers, using queries has two significant downsides:
one, most nodes have far fewer queries than files, and two, using such a scheme would require queries
to have already been issued to see any benefit. Furthermore, file store information is likely to be

30 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

more current than query information, since while a node’s query store may change rapidly as the
node issues a sequence of queries, its file store will generally remain fairly consistent.

Note that this organization scheme requires some way to build a list of potential peers so that
a useful ranking can be computed. In an ideal (but unrealistic) situation, all peers know about all
other peers and can thus organize optimally. In a realistic situation, peers need a way to conduct
exploration of the network. Our exploration consists of repeated applications of Algorithm 2 taking
as input a list of known peers L. Initially, L is comprised of only the entry node.

Algorithm 2 Network Exploration
Require: L = {p1, p2, . . . , pn}
p⇐ remove first(L)
if peer online(p) then
add last(p, L)

else
return L

end if
L′ ⇐ request peers(p)
for all p′ in L′ do

if p′ 6∈ L then
add first(p′, L)

end if
end for
return L

Each time a new peer is found through this exploration, the node requests the new peer’s file
store to update its TF-IDF information. If the new peer’s score is higher than the current best MIN

connections, the node swaps the new peer in and ends its worst ranked connection. One aspect of
this exploration that bears particular mention is the implicit incentive model that results from it.
As nodes remain on the network for longer periods of time, they will explore more of the network
and gradually improve their similarity scores with neighboring peers. This exploration continues
even when nodes are not issuing queries, thus providing users an incentive to simply remain online
while they explore more of the network.

3.3.5 Machine Learning Classifier Policy

We describe one final policy that represents a sophisticated but heavyweight approach to the peer
organization ideas discussed in the previous section. This final policy, however, is much more difficult
to implement in a real-world system. As such, we have not yet actually implemented this policy
in Kudzu; some of the difficulties in applying this policy to a real system are discussed later in
Section 6.1.1.

The TF-IDF ranking, while much more sophisticated than random selection, is still premised
on fairly simple relationships between document sets. Furthermore, evaluation of peer connections
requires transferring entire sets of file store tokens, which may be nontrivial in size. We can improve
on these problems by turning to full-blown machine learning classifiers. Another way of stating the
network organization problem is that, given only a small amount of input information (like file store

3.3. NETWORK ORGANIZATION 31

tokens, but preferably not the peer’s entire file store), we want to create a classifier that determines
whether a given peer is a suitable neighbor for the future.

Rather than computing the TF-IDF on entire file stores and ranking potential peers using the
results, we’d like to determine a small set of keywords that predicts neighbor suitability. Note
that these keywords may not correspond to simple file-file or query-file matches as they do in some
capacity when using TF-IDF. For example, suppose a node is issues queries for Star Wars content
such as “star wars”, “death star”, and “star destroyer”. Suppose also that the node is evaluating two
potential peers, each of which is advertising a single file. The first is offering “the jedi handbook.txt”,
while the second is offering “stars for astrophysicists”. Although the keyword matches all point to
selecting the second peer as the neighbor (due to the matches for “stars”), humans can immediately
see that this is wrong. This is because we have learned from the node’s previous queries that the
node is searching for Star Wars content rather than astronomy content; as a result, we can see that
‘jedi’ is a better predictor of good neighbors than ‘star’. We can try to build a machine learning
classifier that learns these types of relationships.

Formulation as a Classification Problem

One approach we can take is like that described in [5]. For training a peer classifier, we first need a
way to formulate a peer as a data point. Let each peer i be described as a feature vector of binary
features where each binary feature bx represents whether the word token wx ∈ W appears in the
peer’s file store:

~pi = {b1, b2, . . . , bk} | ba ∈ {0, 1}

As in TF-IDF, we consider the complete set of word tokens W to be the set of all tokens
encountered. Given a set of these data points ~pi, the objective is to learn a binary class label yi

specifying whether the peer pi is a good or bad neighbor for the node in question.
As with any supervised machine learning algorithm, we need a training set (that is, a set of

instances for which the class label is known) in order to build a classifier for unknown instances.
The easiest way to empirically determine class labels for particular peers is to simply interact with
them by sending queries – if a potential peer matches many of the node’s queries, the peer is
probably a good neighbor and can be assigned a positive class label, while peers that do not provide
any benefit for the node can be assigned negative class labels. Once a suitable corpus of training
data is gathered from interaction on the network, these points can be fed into an off-the-shelve
machine learning classifier algorithm.

Support Vector Machines

Support Vector Machines (SVMs) were found in [5] to perform well on this task while avoiding
excessive overfitting to the data. Support vector machines operate by taking a set of points in an n-
dimensional space and finding the separating hyperplane that separates positive from negative class
labels (assuming a binary decision problem such as the one here) while maximizing the distance
from the hyperplane to the instances on either side – this is known as ‘maximizing the margin’.

32 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

m
T

H1

H2

Figure 3.1: A non-optimal separating hyperplane H1 and an optimal separating hyperplane H2 with
margin m. Test point T is misclassified as black by H1 but correctly classified as white by H2.

This is an optimization problem which can be solved computationally using quadratic programming
techniques. An example of an optimal separating hyperplane for a binary decision problem in two
dimensions is shown in Figure 3.1. However, SVMs are robust even in extremely high dimensional
spaces, which is useful to our problem because the total size of the word corpus (which corresponds
to the dimensionality of our data) is likely to be quite large. For this reason, SVMs are frequently
used in many types of text classification problems.

Feature Selection

Once we have a classifier for the word features W = {w1, w2, . . . , wk}, we can use feature selection to
choose a small subset or W containing only the most useful features. This is the process of selecting
features to gradually minimize the classifier’s error. For instance, one feature selection procedure we
could choose to use is greedy forward fitting (FF): on each iteration, FF simply greedily chooses the
next feature wi ∈W such that the subsequent error of the classifier is decreased as much as possible.
Using a feature selection algorithm allows us to create a classifier that performs comparably to one
using every feature while only using a small fraction of the total feature set.

This is of particular interest in our case because larger feature sets mean larger amounts of
information that need to be exchanged between peers in order to predict whether a connection
is likely to be fruitful. Given the final classifier (which uses only a small set of word features
F = {f1, f2, . . . , fi} | fj ∈ W), to classify a potential peer we only need to know the binary values
of each fa. In other words, to represent the potential peer, we need only know whether each of the
representative keywords appears in the potential peer’s file store. Once we have this information, we
can feed the feature vector into the classifier, which outputs the class label telling the node whether

3.4. DOWNLOAD BEHAVIOR 33

it should or should not connect to the potential peer. We can thus formulate an organization policy
using an SVM classifier as follows:

• init: Gather training data by participating on the network. Train a classifier using all features
W (W is likely to be quite large), then use feature selection to select a useful but much smaller
subset F .

• chooseNewPeer: For each potential peer pi (found through exploration, as in the TFIDF
policy), request the binary values of each feature in F for peer pi. Store the result into a
feature vector ~pi. Feed this data point into the classifier. If the classifier outputs a positive
class label, return pi. Otherwise, move onto pi+1.

• chooseExcessPeer: For each peer in the list of existing connections, simply repeat the above
procedure and return the first peer for which the classifier returns a negative class label. If
there are none, the node could either retain all its connections or select one at random to
remove.

One of the important things to note about this approach is that the discriminative keywords
identified are specific to the peer in question and may be completely different on another node per-
forming the same algorithm. Returning to our Star Wars example, the classifier may well determine
that ‘jedi’ is a good feature for that peer, even if it is a poor feature for other peers.

3.4 Download Behavior

We modeled the process of conducting file transfers in Kudzu after the highly successful model
employed by BitTorrent. BitTorrent’s high performance largely comes from the ability to leverage
the bandwidth of many peers downloading or sharing the same file. The primary difference in Kudzu
we do not have a tracker like that used in any BitTorrent network.

Due to the similarity of BitTorrent’s download model, we reuse some of BitTorrent’s terminol-
ogy in describing the download process. For a given shared file, a swarm is the set of all peers
participating in the file transfer, including both uploaders and downloaders. A seed is a peer that
is sharing the entire file, while a leech is a peer that is downloading the file without sharing. All
other peers involved in the file transfer have downloaded a portion of the file (which they upload to
peers who do not have that portion) while downloading the remaining portions from other peers –
note that this means two peers may be both uploading and downloading from each other.

Since BitTorrent networks operate only on a single file being shared, it does not exactly map
onto the Kudzu network. Instead, each swarm in a Kudzu network functions as an overlay network
on top of the main Kudzu network. An example of this organization is shown in Figure 3.2.

3.4.1 File Identification

Files in a Kudzu network are located using keywords searches, but keywords (or even the exact
filenames returned) do not uniquely identify desired files. BitTorrent deals with this issue with the

34 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

N1

N2

N3

N4N5

foo.mp3

bar.m4v

foo.mp3

foo.mp3

bar.m4v

quux.iso

bar.m4v

foo.mp3
N1, N2, N3

bar.m4v
N2, N3, N5

quux.iso
N3

Figure 3.2: A Kudzu network of 5 nodes containing 3 download swarms. Solid lines indicate peer
connections, while dotted lines indicate swarm connections.

use of .torrent files, which contain a unique signature for the file to download. Kudzu calculates
unique signatures as well, but allows users to locate file signatures using keyword searches in the
network itself rather than requiring an external search engine for .torrent files. Each node calculates
an Adler32 [9] checksum to uniquely identify each of its files (though any similar checksumming
algorithm, e.g. CRC32, could be used). Checksums are computed based only on the file’s contents;
thus, files that have been renamed will still be recognized as the same file.

For each query response that returns to a node, the node stores the responder’s IP address
and the names and checksums of the matched files. If the node is already storing responses that
contain one or more of the same files, the IP addresses are stored together – this gives a record of all
responders that contain that particular file. Actually starting the download is left to the user, which
is accomplished by choosing the desired filename. This tells the node which checksums is desired,
at which point the node can connect back to all the nodes who responded with that file and begin
the download.

3.4.2 Chunks and Blocks

In order to leverage the bandwidth of many users transferring the same file, it is important to be
able to both download and upload simultaneously from multiple other peers. Similar to BitTorrent,
Kudzu facilitates this by breaking up a shared file into multiple chunks, each of which is further
broken up into multiple blocks. The primary distinction between the two is that chunks are the

3.4. DOWNLOAD BEHAVIOR 35

smallest units that are advertised by peers as ready to be uploaded, while blocks are the actual atomic
units of transfer. The actual sizes of a chunk and a block are constants that may be set arbitrarily
but manifest several important tradeoffs. Smaller chunks have the benefit of allowing downloaders
to begin uploading rapidly (since data may be uploaded with finer granularity), but at the price
of bandwidth overhead that is linear in the total number of chunks. Larger blocks reduce overall
bandwidth usage since fewer messages need to be exchanged, but can pose problems with nodes on
slow or congested network connections – since blocks are the smallest units of transfer, transferring
a large block from a slow peer may cause the download (or single chunk) to take significantly more
time than if a smaller block size was used (which would result in a lesser request to the offending
peer). We set our defaults values at 16 kilobytes per block and 512 kilobytes per chunk, which are
typical values in a BitTorrent swarm.

3.4.3 Swarms

An active download consists of a single manager that delegates download chunks to multiple down-
load streams, each of which requests blocks from a single other peer. Download streams are given
their own connections from the rest of Kudzu to avoid slowing down query traffic and do not count
towards the node’s current number of connections. Optimizing the process of downloading involves
several primary considerations:

• Since nodes can upload chunks that they have completed downloading, it is in the network’s
best interest to ensure that peers are downloading different chunks, thus allowing them to
subsequently share those chunks with each other. Clearly, downloading chunks sequentially is
a poor strategy – a much better strategy is to download the chunk that the fewest members
of the swarm already have. For ease of implementation, however, we opted for pseudo-random
selection. Truly random selection is impossible, because from a given peer we can only down-
load a chunk that the peer already has. We deal with this by first choosing a random point in
the file as if the peer already had the entire file, then choosing the peer’s next available chunk
in a round-robin fashion.

• Subject to the manner of chunk selection, chunks that are already in progress should be
prioritized due to the reasons mentioned in Section 3.4.2. Since chunks are broken up into
blocks, we can assign multiple download streams to a single chunk, thereby hastening its
completion and subsequent upload capability. Thus, we always assign a stream to an existing
chunk transfer (if possible) before applying the random process described above.

• For reasonably fast connections with high round-trip times (which are common in global net-
works), the small size of a block transfer is likely to be insufficient to saturate the link’s
bandwidth-delay product. In these cases, the amount of data transferred can be increased
dramatically by allowing multiple unacknowledged block requests to a single peer at once –
this is called pipelining. Pipelining is an example of a simple parameter (the number of si-
multaneous requests allowed) that can have a major impact on performance, as an incorrect
choice can either waste or underutilize large amounts of bandwidth.

36 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

Chunks themselves are represented simply as bits corresponding to having or lacking each chunk.
Our chunk selection algorithm is given in Algorithm 3 for downloading from a peer with chunks C
given already downloaded chunks D and in-progress chunks P (all containing n bits). Once a stream
has been assigned a chunk, it sequentially (in concert with all other streams assigned to the chunk)
downloads all blocks in the chunk, then requests another chunk to download from the manager and
repeats the process. New swarm members that are added after the download has started are assigned
chunks upon arrival and operate in exactly the same process.

Algorithm 3 Download Chunk Selection
Require: C = {c1, c2, . . . , cn}, D = {d1, d2, . . . , dn}, P = {p1, p2, . . . , pn}
C ⇐ C \D
if |C| = 0 then

return none
end if
S ⇐ C ∩ P
if |S| > 0 then

return S1

end if
x⇐ rand range(1, |C|)
for i = x to |C| do

if Ci = 1 then
return Ci

end if
end for
for i = 1 to x do

if Ci = 1 then
return Ci

end if
end for

3.4.4 Gossip

Several types of communication occur over a download swarm besides the actual transmission of file
data. We refer to these ad-hoc communications as gossip. To facilitate continued upload/download
activity, active swarm members periodically exchange their chunk sets, thereby updating all other
nodes on new chunks that are available for download. This is where we pay a price for smaller chunks,
as more data must be transmitted to account for a larger total number of chunks. Downloaders in
the swarm also periodically choose another peer in the swarm at random and exchange the known
swarm peers. Thus, any peers in the swarm known to one of the gossip participants will be relayed
to the other. The long-term effect of this gossip is that a node only needs a query to reach a single
member of a download swarm in order to eventually discover everyone who has the file. This allows
us to be more lax with the query TTL while not compromising swarm performance.

It is also interesting to note that initially, every shared file on the network is effectively its own
download swarm with the host peer as the single seed and no other participants. This means that the
entire Kudzu network may end up with multiple active swarms for the same file depending on where

3.5. A DISTRIBUTED TEST FRAMEWORK 37

queries originate and reach. A positive effect of our swarm gossip is that if any node’s query reaches
members of multiple swarms for a particular file and then begins downloading it, the new node forms
a link between the two swarms and effectively merges them into a single, more effective swarm. As
gossip occurs, the new node will gather the swarm members from both individual swarms, and each
of the two swarms will learn of the peers in the other. This automatic merging is an improvement
over BitTorrent, where many swarms may exist in isolation for the same file – typically, some of the
swarms are unsuccessful in maintaining a critical mass of peers and ultimately go dormant, resulting
in useless torrent files leading to no seeds.

3.5 A Distributed Test Framework

Gathering empirical data on a large-scale distributed system is a difficult problem, especially in
systems like a P2P network where its behavior is heavily dependent on the actions of its users
rather than simply the system’s design. A traditional approach to evaluating large scale networks
is creating a discrete event simulator, which can then be used to model very large networks locally.
The ability to arbitrarily scale is certainly a draw towards using a network simulator. However,
simulators also suffers from several shortcomings. One of the most important is that a simulator
cannot easily model all network conditions – the number of variables involved are numerous and are
often interdependent. For instance, users on the same local area network will experience the network
quite differently relative to each other as they will to other users in the wide area. These types of
situations make accurate simulation quite difficult. Furthermore, in a P2P system like Kudzu, the
scarcest resource in the system is bandwidth, and accurate bandwidth measures between machines
over a large and unpredictable network such as the Internet are difficult to employ in a simulator.

Since we opted to forgo a simulator to run our experiments, we designed a test framework to
run a real network using a large testbed on a wide-area network. The obvious testbed for this is
PlanetLab [21], a global network of roughly 1000 machines spread across the world available for
running distributed system experiments. Running live tests on PlanetLab solves the problem of
unrealistic network conditions and subjects our system to all the perils (latency, unresponsive peers,
etc.) that a deployed P2P system is subjected to in a live deployment.

3.5.1 Simulating User Behavior

Running on a real wide-area network is only one of the major hurdles in running useful tests of the
system. The other is that simulating user behavior is extremely difficult. Since our system has (as
of yet, at least) no actual users, the only way to measure statistics is with simulated users. User
querying behaviors and shared file stores are impossible to model in a useful way without working
from preexisting data. Thus, rather than attempting to model users from scratch, we take data
captured from an actual network in the past and replay it on the testbed, thereby subjecting the
system to actual user behavior observed on a similar network.

The dataset we use is a 2005 trace of a Gnutella network captured by Goh et al [12] that contains
information describing roughly 3500 unique users observed on the network over a period of 3 months.

38 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

For each user, the dataset contains two sets of information: the set of queries issued by the user,
and the complete set of files shared by the user. Each query consists of a set of keywords and the
timestamp at which the query was issued. Each file consists of a filename and a filesize. The dataset
also contains some miscellaneous information such as user connection speed (e.g., dialup or DSL)
and the user’s Gnutella client software.

3.5.2 Replayer Design

Deciding how to replay the Gnutella dataset for Kudzu posed several design questions. One problem
was the actual number of users in the datasets, which was significantly greater than the number of
machines available in our testbed. Before discussing our approach to the problem, we give a few
definitions. A virtual user refers to a single logical user (that is, a set of files and queries) running
on some testbed machine. A real user refers to an actual testbed machine communicating across
the network with other machines. There is generally (but need not be) a one-to-one correspondence
between virtual users and real users. We considered several ways to account for this issue:

1. Assign a single random virtual user to each available real user and simply replay as many
virtual users as the testbed allows. This is the most straightforward option and will not have
unexpected side effects, but does not fully exercise the dataset. If the testbed is not large
enough, too little data will be replayed to generate meaningful results.

2. Merge multiple virtual users into a single virtual user (by merging the file and query sets) and
assign the result to a real user. This would allow us to exercise the entire dataset, but is also
likely to interfere with organization policies, because the net result will be that the original
(pre-merge) users will compete for the best peer connections to match their queries. Keeping
the virtual users separate ensures that connections are established only based on the activity
of the real-life user from which the virtual user was captured.

3. Run multiple virtual users as distinct entities on a single real user. This would also allow us
to exercise the entire dataset, but is likely to have unintended side effects of running multiple
clients on a single machine. Virtual users that are highly active will negatively impact the
performance of other virtual users on the same machine. Furthermore, assigning multiple
users to a single machine results in greater overall disruption when a machines fails or acts
unexpectedly.

We ultimately opted for option 1 after deciding that the size of the user subset we could replay
was sufficient for running useful experiments (see Chapter 5 for the results of our experiments). In
this case, the simplest approach is also the most realistic, as virtual and real users become effectively
the same entity.

Another issue was the length of time covered by queries in the dataset (roughly 3 months). We
obviously could not afford to play back the dataset in realtime, so we modify the timestamps of
all queries in the dataset by speeding up time by a large multiple. This means that the sequential
ordering of queries is still correct while allowing us to run large-scale experiments in the span of

3.6. SUMMARY 39

only a few minutes or hours rather than multiple months. The choice of time multiple is a tradeoff
between the amount of time required and result fidelity, since larger multiples will cause the network
to be significantly more congested during testing. Our particular dataset, however, is fairly sparse
(in that most users only issue a few queries), so congestion was never an issue during testing.

In practice, the actual coordination of testbed nodes to replay the dataset presents a number
of additional hurdles to overcome. This is due both to the large number of machines we wish to
coordinate and to the general unreliability of the PlanetLab testbed. We discuss the ways we dealt
with these types of problems in Chapter 4.

3.6 Summary

Kudzu is designed to be an efficient, scalable P2P transfer system that merges successful aspects of
both Gnutella and BitTorrent-like systems while remaining completely decentralized. Furthermore,
it improves on their basic design by employing adaptive behavior to intelligently organize the net-
work. In order to evaluate Kudzu under real-world settings, we also designed a test framework that
replays real user data on Kudzu using a live network, thereby introducing all the variables normally
encountered in a real-world network setting.

Chapter 4

Implementation: The Kudzu Client

We have implemented a Kudzu client according to the specification described in Chapter 3, as well
as the test harness for running experiments on our client. Since a Kudzu network is comprised
entirely of clients with no higher-level coordination required, the client itself implements all aspects
of a Kudzu network. Our implementation of the client is a Java program of roughly 3000 lines.

The client is started on the command line and is provided a directory from which to share files
and download into and a hostname or IP address of an existing Kudzu peer to connect to. If an
existing peer is not provided, the client starts but has no connections, and thus will not be part of
any greater network until other peers connect to it. Once the client is started, it presents a simple
command-line interface to the network controlled primarily through the following three commands:

• query [keywords]: Issues a query for [keywords] to all connected peers. Since there is no upper
limit on the amount of time that may pass before matches returned (and no matches may ever
occur), this operation has no immediate effect visible to the end user.

• responses: Displays all responses that have been received for previously issued queries. For
each query that has received matches, a list of the matches received is outputted along with a
download id for each file match.

• download [download id]: Initiates a download of the file identified by the given download id.
The id is provided to the user by issuing the responses command. Once the download starts,
progress measurements are outputted until the download is complete.

An example session in which a client issues a query and downloads a file from two peers is shown
in Figure 4.1. Note that a small amount of waiting (a few seconds) is implied in between issuing the
query and checking the result set to allow for queries to reach matching peers.

4.1 Communication Framework

The most important aspect of most P2P systems is the communication that occurs between peers,
and Kudzu is no exception. Peers in a Kudzu network are constantly exchanging messages with each

40

4.1. COMMUNICATION FRAMEWORK 41

$ kudzu -d sharedir -n planetlab1.williams.edu
Starting node and connecting to planetlab1.williams.edu...
You are connected to Kudzu.
> query coaster
Sent request for ‘coaster’ to peers.
> responses
Query ‘coaster’:

id 0: ‘roller_coaster.mp4’ (3907036 bytes):
Peer planetlab2.williams.edu
Peer planetlab1.williams.edu

id 1: ‘glass_coasters.mp4’ (2688476 bytes):
Peer planetlab3.williams.edu

> download 0
Downloading ‘roller_coaster.mp4’ (3815 KB)...
Received 464 of 3815 KB (475 KB/s, 2 peers)
Received 1432 of 3815 KB (695 KB/s, 2 peers)
Received 2536 of 3815 KB (482 KB/s, 2 peers)
Received 3815 of 3815 KB (612 KB/s, 2 peers)
Validating file contents...file validation succeeded.
Download complete of ‘roller_coaster.mp4’ (average speed 514 KB/s).

Figure 4.1: User interaction with the Kudzu client.

other, so a robust and efficient communication framework is extremely important to ensure that a
Kudzu network exhibits both high performance and low overhead. This section discusses how the
communication in a Kudzu network is managed.

The communication internals of Kudzu went through three distinct iterations, according both
to our requirements and problems we identified along the way. With each new version, the primary
consideration was improving efficiency (that is, reducing the number of bytes transferred over the
network), but many of our changes brought about other improvements as well. We describe each
implementation of the communication system here.

4.1.1 Java RMI

Early implementations of Kudzu communicated with other nodes using Java Remote Method Invo-
cation [32]. Under RMI, servers contain registries that publish Java objects to a public interface,
which allows remote machines to obtain references to those objects and invoke methods upon them.
Using this API in Kudzu, each peer published a single Node object that contained methods to per-
form all actions required by other peers. Under this model, for a peer p1 to communicate with a peer
p2, p1 needed only to fetch the object reference from p2 and could then call on it whatever methods
are required (e.g., sendQuery) without ever again explicitly dealing with network operations.

Our RMI implementation was motivated primarily by simplicity. RMI is extremely clean from
a programmatic perspective, as peers are represented by logical objects, which parallels the actual
communication that occurs. Since the underlying network activity is almost completely abstracted
away, we could focus only on the core network logic without worrying about communication details.

42 CHAPTER 4. IMPLEMENTATION: THE KUDZU CLIENT

However, while the RMI implementation was functional, it had several major flaws. The most
serious was that it was inefficient; the price of RMI’s generalized abstraction is significant overhead
both on the network and on the CPU. RMI layers additional abstractions on top of the normal
overhead of Java serialization (which alone is already significant). Another problem was that due to
the high level that RMI operates at, it was difficult to tell how nodes were using resources such as
bandwidth and file descriptors for socket connections. In practice, we found that RMI also caused
problems in tests when we attempted to aggregate results from many nodes at a single machine.
Lastly, RMI’s inability to easily make asynchronous calls meant wasted overhead waiting for messages
to finish a round trip when the response was to be ignored anyway.

4.1.2 Java Serialization

Once we identified how RMI was ill-suited to Kudzu as described above, we redesigned the client to
use Java serialization through regular sockets. This gave us much greater control over the lower-level
networking details at the expense of added complexity. However, with this added complexity we
were able to add the capability to easily pass messages both synchronously and asynchronously (see
Section 4.1.5 for details). Since we then needed to explicitly represent messages to be passed (unlike
in RMI where the communication was implicit), we defined a class for each message type, thus
making connections between peers simply streams of message objects passing back and forth. Java
itself handles all the details of writing the objects to the network. While convenient, however, this
meant that we had limited control over the amount of information actually sent over the network.
Serialized objects contain a significant amount of metadata which the programmer has no control
over; while this may only amount to overhead of tens of bytes per object, the primary operation
in a Kudzu network is exchanging messages, and peers may be handling hundreds of messages per
second. Furthermore, since Kudzu messages (and messages in most similar P2P systems, for that
matter) are flat, one-shot communications that have no extended lifetime, the benefits of full-blown
Java objects (such as inheritance) went unused.

4.1.3 Protocol Buffers

For the final version of the messaging framework, we wanted to use a format that allowed tight
control over the underlying wire format while being as compact as possible. We settled on protocol
buffers [15], a low-level message interchange format developed for internal use and subsequently
open-sourced by Google. The protocol buffer wire format generates messages much smaller than
their equivalent Java counterparts with comparable or better CPU usage [13]. Protocol buffers
operate by taking as input a .proto file defining one or more message types and compiling it into
standard Java class code that reads and writes the message types over the network. An excerpt of
Kudzu’s .proto file that defines query messages is shown in Figure 4.2.

The wire format of protocol buffer data is highly tuned to efficiency. Unsigned ints are encoded
as varints, in which the top bit of each byte flags whether the entire int has already been read or
whether it continues on into the next byte. This means, for instance, that the values 0 to 127 may
be encoded using only a single byte. Signed ints are encoded using ZigZag [14] encoding, in which

4.1. COMMUNICATION FRAMEWORK 43

message QueryRequest {
required string keywords = 1; // query keyword string
required bytes requesterAddress = 2; // IP address of requester
required int32 ttl = 3; // query’s remaining number of allowed hops

}

Figure 4.2: One of Kudzu’s protocol buffer definitions.

the sequential unsigned integers are used to encode 0, -1, 1, -2, 2, and so forth. This saves bytes
when encoding ints whose absolute value is low. Complete protocol buffer messages are also quite
efficient and include almost no metadata. A message is encoded as a series of key-value pairs, one
pair for each field of the message (e.g., ‘keywords’ in the above). Keys are encoded as three bits
specifying the value type (‘int32’, ‘string’) and then a varint specified in the .proto file used to
signal the particular field. This means that for fields with identifying values needing no more than
5 bits (effectively the first 16 fields of each message), the field key is contained in a single byte.

Returning to our example message definition, we have three fields and have specified the iden-
tification values 1, 2, and 3 (the trailing numbers are not value assignments). This means that on
top of the actual message data, we have only 3 bytes of overhead. Suppose we have a query for
‘beatles’. Given this 7 byte string (plus 1 to delimit the length with a 1 byte varint) and assuming
a standard 4 byte IP address and 1 byte TTL, the entire size of the message is 3 + 8 + 4 + 1 = 16
bytes. Note that since this represents only the Kudzu payload, the amount of data transferred over
the wire is actually dominated by TCP and IP; assuming a standard TCP and IP header of 20 bytes
each, the total number of bytes required to send the message will be 56.

In addition to the efficiency and control afforded by protocol buffers, they have the added benefit
of being language and implementation agnostic. Given Kudzu’s small .proto file, a third-party
could with fairly minimal difficultly write a fully functional Kudzu client in any language for which
there exists a protocol buffer compiler (at present, this includes Java, C++, and Python).

4.1.4 Kudzu Message Encoding

Since protocol buffer messages are simply key-value pairs with no other identifying information, it
is difficult to determine what type of message has actually arrived after it’s been read. To deal with
this, we encapsulate each message in a common wrapper message. The only field a wrapper message
is guaranteed to contain is a one byte int specifying the message type. Each message type that
requires specific information has a payload message defined (like the one in Figure 4.2), and the
wrapper message has an optional field for each payload type. The type indicator int in the base
message signals not only the message type, but also which payload is contained in the message (if
any). Since optional fields that are not provided add nothing to the binary form of a protocol buffer
message, defining these optional fields does not increase the size of messages at all. The full protocol
buffer specification of the base message class is shown in Figure 4.3.

The last encoding issue is that protocol buffer messages are not self-delimited; that is, they do not
provide a way to determine when a complete message has been a received. This is problematic for a

44 CHAPTER 4. IMPLEMENTATION: THE KUDZU CLIENT

message Message {
required int32 type = 1; // type specifying which (if any) content field is filled
optional int32 id = 2; // message id to identify a response message
optional BlockRequest blockRequest = 3;
optional BlockResponse blockResponse = 4;
optional ChunkSetRequest chunkSetRequest = 5;
optional ChunkSetResponse chunkSetResponse = 6;
optional ErrorResponse errorResponse = 7;
optional FileStoreResponse fileStoreResponse = 8;
optional HostRequest hostRequest = 9;
optional HostResponse hostResponse = 10;
optional PeerExchangeRequest peerExchangeRequest = 11;
optional PeerExchangeResponse peerExchangeResponse = 12;
optional QueryRequest queryRequest = 13;
optional QueryResponse queryResponse = 14;

}

Figure 4.3: Protocol buffer specification of base container message.

network connection on which bytes are continuously arriving because the receiver cannot determine
when one message ends and the next begins. To deal with this, we simply append a varint-encoded
byte length onto the front of each message. Since most messages (with the notable exception of
download block messages) are less than 128 bytes in size, this header is generally only a single byte.

In summary, the process of receiving Kudzu messages from a peer is as follows:

1. Read a single byte at a time until a full varint is received (this will never be more than 4
bytes). Call the value of this varint n.

2. Read n additional bytes and parse them into a Message. Call this message m.

3. Read the type field of m. Retrieve the appropriate payload field as specified by the type (if
any).

4. Handle the message payload appropriately. Optionally send a response message.

5. Repeat while the peer connection remains open.

4.1.5 Connection Management

In addition to handling the transfer of specific messages using protocol buffers, we needed to man-
ually manage peer connections to provide useful response-request. Each two-way peer connection is
handled as a pair of one-way connections. The sender in each of these connections sends data on the
socket whenever needed and optionally waits for a response message to appear on the same socket.
The receiver client runs a background thread that consumes incoming input from the socket, handles
it, and sends response messages if needed. Since a connection of this type exists in either direction
between the two peers, clients are always sure whether they are receiving requests or responses

4.1. COMMUNICATION FRAMEWORK 45

to their own requests from the other peer. To avoid wasting time and bandwidth on constantly
reestablishing connections, connections between peers are left open continuously until one of the
peers leaves or intentionally terminates the connection for some other reason.

Our client provides the following three types of communication calls over peer connections:

• Synchronous requests: a thread sends a message and blocks until a response is returned,
at which point the thread is woken up and returns the response. If a specified amount of time
passes before a response is received, the thread is woken up and a peer timeout exception is
thrown. If an error response is received rather than a response of the expected type, a peer
error exception is thrown. This type of call is used for operations in which a response is needed
before the thread can proceed, such as requesting new peers from an existing peer so that they
can be added as new connections of the node.

• Asynchronous requests: a thread sends a message and returns immediately without waiting
for a response. If a response is ever received to the request, it is discarded. This is used for
operations such as forwarding queries in which no response is expected and errors can safely
be ignored.

• Asynchronous requests with callbacks: a thread sends a message and passes a callback
function specifying two operations: a standard response handler and an error handler. The
thread returns immediately without waiting for a response. When a response arrives, the
callback function is executed on a separate thread (the operation executed depends on whether
an expected or error response was received). If the timeout runs out before a response has
arrived, the error handler is executed on the separate thread. This is used for operations in
which a response is expected but the order of responses is irrelevant and nothing is waiting on
the result. For instance, this call type is used for fetching many download blocks concurrently.

Since a P2P application like Kudzu is highly concurrent, many communications may be occurring
over a single peer connection simultaneously. This means that for multiple threads waiting on
responses, the response messages may arrive in any order. We deal with this via an additional
integer field defined in the base protocol buffer message definition. When a request message is sent
out over a connection, the node first stores a message id into this field. The recipient reuses this
id when constructing the response message. The requester maintains a map of message ids to the
threads waiting on them; thus, it needs only to check the id on incoming responses to determine
which thread should handle the response.

Request ids are assigned in round-robin style from 0 to 127 so that they always fit in a single
varint byte. Since ids are only intended to be unique on a per-connection basis, the only assumption
we make in restricting ids to this small range is that no node will ever have more than 128 out-
standing message requests to a single node – in practice, this assumption has never been a problem.
Furthermore, for asynchronous requests without callbacks, the request id can be omitted entirely.

46 CHAPTER 4. IMPLEMENTATION: THE KUDZU CLIENT

4.2 Message Types

Kudzu peers exchange information using 16 distinct message types. We give a brief description of
the purpose and contents of each message type here. The complete protocol buffer specification of
all message payload types is given in Figure 4.4.

• ping: a message with no payload that simply returns another ping message. Used to verify
that peers in a download swarm are still alive to avoid gradual accumulation of disconnected
peers in the list.

• backconnect: a message with no payload that signals to establish the second half of a two-way
connection back to the message sender. Typically the first message sent after a node decides
to add another node as a query neighbor.

• disconnect: the counterpart of a backconnect message: signals to terminate the second half
of a two-way connection back to the message sender. Sent after a node decides to remove one
of its query neighbors.

• block request: a request for a block of a file. The payload contains the checksum identifying
the file in question and the block’s byte offset from the start of the file. This type of request
is how all download blocks are fetched.

• block response: the response to a block request message. The payload contains the binary
data of the requested file block.

• chunk set request: a request for an updated listing of all chunks of a file that the recipient
has in full and is ready to upload. The payload contains the checksum of the file in question.
This is used by peers in a download swarm to learn about chunks that other peers have obtained
so that they can be subsequently fetched from those peers.

• chunk set response: the response to a chunk set request message. The payload is a bit
string whose length is the number of chunks in the file and each bit set to 1 indicates that the
peer can upload that chunk.

• error response: a generic response that can be sent in response to any request message
indicating that something unexpected happened. The payload is a string describing the error
that occurred. For example, an error of this type will be sent if a block is requested of a file
that the node does not have.

• filestore request: a message with no payload that signals a request for a listing of all words
(and associated frequencies) in the recipient’s set of filenames.

• filestore response: the response to a filestore request message. The payload contains a
single string consisting of concatenated substrings for each filestore word token. Each substring
consists of the word, a space, the frequency, and finally a newline.

4.3. TEST FRAMEWORK 47

• host request: a request for a random assortment of the target peer’s neighbors (not including
the requester, of course). The payload contains an int specifying how many new neighbors are
desired. This message is used by node organization policies to populate their neighbor sets.

• host response: the response to a host request message. The payload contains up to the
number of requested peer addresses (but may contain fewer).

• peer exchange request: a request for all known peers in a download swarm. The payload
contains both the checksum of the file in question and the sender’s own swarm set so that the
receiver doesn’t need to make the same request in reverse. This effectively syncs the swarm
between the two peers.

• peer exchange response: the response to a peer exchange request message. The pay-
load contains the addresses of all known peers in the specified swarm.

• query request: either a new request the sender is issuing to the network or a request that
the sender received and is now forwarding on. The payload contains the query’s keywords, the
address of the peer that originally generated the query, and the remaining number of allowed
hops. For the purposes of testing, we also insert a randomly generated int into every newly
generated query to be able to distinguish duplicates. This is because in practice, users often
send the same query several times in a short time period, and we want to be able to tally
duplicate queries without simply discarding them. In a deployed network, however, the id field
is unnecessary.

• query response: this message type is somewhat different from the other response messages
because although logically it is sent as a response to another node’s query, it is sent as a request
itself. This is because query requests are asynchronous; the requester has no idea of when (if
ever) to expect responses, so there is nothing waiting on query responses to quickly return. The
message payload contains the keywords of the query being answered and an arbitrarily-sized
list of matches to the query. Each match is an embedded message consisting of a filename, a
filesize, and a checksum.

4.3 Test Framework

In addition to the Kudzu client itself, we also implemented the wide-area testing framework described
in Chapter 3. Given the dataset described in Section 3.5.1, the goal is to replicate the conditions in
the dataset as closely closely as possible on a set of real machines. The framework consists of two
primary components: a centralized, standalone manager (a Java program of about 1000 lines) that
coordinates all test participants, and a small test wrapper around the standard Kudzu client that is
run on all peers in the test network. Coordination of a replay test consists of several major stages,
which we discuss here.

48 CHAPTER 4. IMPLEMENTATION: THE KUDZU CLIENT

message BlockRequest {
required sint64 fileChecksum = 1;
required int64 offset = 2;

}

message BlockResponse {
required bytes block = 1;

}

message ChunkSetRequest {
required sint64 fileChecksum = 1;

}

message ChunkSetResponse {
required bytes chunkSet = 1;

}

message FileStoreResponse {
required string fileStore = 1;

}

message HostRequest {
required int32 numHosts = 1;

}

message HostResponse {
repeated bytes addresses = 1;

}

message ErrorResponse {
required string errorMessage = 1;

}

message PeerExchangeRequest {
required sint64 fileChecksum = 1;
repeated bytes peerAddresses = 2;

}

message PeerExchangeResponse {
repeated bytes peerAddresses = 1;

}

message QueryRequest {
required string keywords = 1;
required bytes requesterAddress = 2;
required int32 ttl = 3;
optional int32 id = 4;

}

message QueryResponse {
required string keywords = 1;
message FileStubMsg {
required string name = 1;
required int64 size = 2;
required sint64 checksum = 3;

}
repeated FileStubMsg matches = 2;

}

Figure 4.4: Protocol buffer specification of all message payload types.

4.3. TEST FRAMEWORK 49

<USER>
<PROPERTY>

<USERID>436</USERID>
<CONNECT_SPEED>Modem</CONNECT_SPEED>
<CLIENT_SW>LIME</CLIENT_SW>

</PROPERTY>
<SHARED_FILE>

<FILENAME>foo.mp3</FILENAME>
<FILESIZE>4353681</FILESIZE>

</SHARED_FILE>
<QUERY>

<KEYWORDS>bar</KEYWORDS>
<TIMESTAMP>325360</TIMESTAMP>

</QUERY>
<QUERY>

<KEYWORDS>quux baz</KEYWORDS>
<TIMESTAMP>326988</TIMESTAMP>

</QUERY>
</USER>

Figure 4.5: An example dataset user entry with 1 file and 2 queries.

4.3.1 Data Parsing and Cleaning

The dataset itself is simply a large (roughly 20 MB) XML file containing users and their files and
queries. An example user entry is shown in Figure 4.5. The first step in conducting a test is parsing
the XML file into virtual users. While the dataset is mostly free of errors, there are several files
or queries with incorrect information, which we simply ignore during parsing. After parsing has
completed, we shift all query timestamps so that the first query is sent at time 0 – this allows us
to interpret the timestamps as simply delays from the start of the simulation. Timestamps are also
scaled so that the simulation has the desired duration (roughly 2 minutes).

The last step in prepping the data is ordering the users. Since we have over 3000 users in the
dataset but only about 1000 machines on PlanetLab (of which we can only harness about half at any
given time), most virtual users will not actually participate in the test. Each test either generates
and stores an ordering of the dataset user IDs or reuses an existing ordering. This gives us much
greater confidence in running series of experiments, since most of the participating virtual users will
be the same. We initially generated user orderings randomly, but found that sorting by file and
query counts provided a better set of test users (discussed further in Chapter 5).

4.3.2 Virtual User Assignment

Once the manager has parsed the dataset and is ready to assign users according to the chosen
ordering, it begins listening on the network for test peers to report in. Each test node is given the
manager hostname as a command line argument so that it knows what address it should connect to
for instructions. Once a test node connects to the manager, the manager takes the next available
virtual user, serializes it, and sends it across the network. The connection is then terminated so as

50 CHAPTER 4. IMPLEMENTATION: THE KUDZU CLIENT

to avoid requiring the manager to keep open connections to hundreds of other machines.
Once a test node has received its virtual user assignment, it populates itself with the files specified

in the virtual user by writing a blank file of the correct size and filename. This is a convenience to
ensure that no problems occur from not actually having the files in question. To keep file checksums
from clashing, we write a small number of random bytes of data onto the front of each file. Since
virtual users may have hundreds of even thousands of files, the process of populating the test node
can take some time. Once the node is fully populated, it starts up a Kudzu node (but does not
schedule its queries) and connects back to the manager, writing a single byte indicating that the
node is ready to proceed. The node then waits for the manager to signal to start the simulation.

The manager, meanwhile, simply assigns users and waits for assigned users to report back for as
long as is desired. Since some PlanetLab machines are on slow or otherwise inhospitable network
connections, many machines will never actually report in to the manager, and some of those assigned
may not signal that they are ready for a long time (for example, due to running out of disk space).
The manager continues assigning and waiting for users until we tell it to proceed, at which point it
stops accepting new connections and ignores any further peers that complete the file population.

4.3.3 Simulation

If not using a fixed organization policy, the manager can immediately tell every ready test peer to
proceed with the simulation. Once a test node receives confirmation to proceed from the manager, it
schedules every one of its queries at the specified timestamps. If the test is using a fixed organization
policy, there is the added step of specifying which nodes should actually be used as neighbors.
Unfortunately, this cannot be decided until the manager has a list of the peer that successfully
reported in, since we don’t want to assign unusable neighbors to peers. Thus, once the manager
has finalized its list of ‘live’ machines, it creates a matching of them such that each peer has the
required number of connections, then sends each of those assignments to the test machines. Once
the test machines have confirmed their connection lists (as with the initial user assignment, some of
the peers generally fail to confirm), the manager signals the start of the simulation as before.

4.3.4 Logging

Each test machine runs the simulation Kudzu node for the duration of the test data (that is, the
maximum query delay in the dataset), plus an additional buffer time to account for the variation in
the time at which nodes receive the simulation start order. During the simulation, nodes log every
message type sent and received as well as message byte sizes and several other aggregate statistics,
such as the number of query matches sent and received. At the conclusion of the simulation, nodes
connect back to the manager a final time and send their logs over the network. Once a test node
has sent its log, it clears the virtual user’s files that were created for the test run and exits. The
manager collects the logs, outputs them into a comma-separated value (CSV) file and calculates
useful statistics such as query recall. Since the manager knows about every user that participated
in the simulation (and by extension, every file and query on the network), it can determine the total
number of query matches that could have occurred during the simulation.

4.4. SUMMARY 51

4.3.5 Bootstrapping

The process of actually bootstrapping the test involves pushing out the Kudzu software to PlanetLab
and then starting the software on as many of PlanetLab’s 1000 machines as can be harnessed. We
set a single machine up to use as a server for the Kudzu software (distinct from the machine being
used as the manager to lessen the bandwidth load). Of course, in order for either the manager or
any test nodes to download the software and begin execution, the command to start them must be
sent from somewhere. The most straightforward way to issue commands to PlanetLab machines is
through SSH connections. Unfortunately, given the number of machines we try to contact (roughly
1000), trying to open all SSH connections from one machine is a fairly fruitless endeavor due to the
required upstream bandwidth of doing so. Thus, rather than using a single machine, we distributed
the workload of sending the SSH commands to about 10 control machines. The master control
program (a small Perl script) opens up SSH connections to each of the control machines and assigns
each of them responsibility for an equal share of the PlanetLab machine list. Each control machine
then opens SSH connections and issues both the software download and Kudzu start commands to
every PlanetLab machine in their assigned portion, pausing briefly after each assignment to avoid
overloading the software server from the hundreds of concurrent requests. Once each command is
issued, the Kudzu test program begins executing and follows the procedure described above.

4.4 Summary

The process of implementing Kudzu was primarily an exercise in designing a robust and efficient
system of communication between peers in the network. The final solution of using protocol buffers
provided a useful amount of abstraction while remaining low-level enough to keep communication
overhead to a minimum. Some messages (for example, a ping message) are transmitted across the
network using as little as 5 bytes of data – a one byte header, a two byte type field, and a two byte
message id.

Implementing the test harness was mostly an issue of accounting for both the large size and gen-
eral unreliability of PlanetLab. Since PlanetLab contains many unreliable machines, our simulations
had to try to keep tests as consistent as possible in an environment in which machines are constantly
acting unexpectedly or not responding at all. Furthermore, we needed to deal with the challenges
of coordinating hundred of machines from a single manager.

Chapter 5

Evaluation

In order to evaluate the effectiveness of our design and implementation choices, we conducted ex-
tensive tests of a Kudzu network using our client by running our test framework on PlanetLab. Of
PlanetLab’s roughly 1000 machines, we were able to harness roughly half in our tests, which we
found to be sufficiently large to give useful results. We present the results of our experiments here.

5.1 Evaluation Metrics

The first consideration in designing our experiments was deciding what we wanted to evaluate during
our tests. We decided on three primary aspects of the network that we were interested in measuring:
bandwidth utilization, query recall, and download speeds.

5.1.1 Bandwidth Utilization

Since the primary scalability bottleneck in a fully decentralized network like Kudzu is bandwidth,
we wanted to gather realistic data on the amount of network traffic actually used by Kudzu. Since
we had an actual implementation of Kudzu to experiment with, measuring bandwidth usage was
a straightforward matter of totaling all incoming or outgoing messages at each node and then
aggregating this information at the completion of a test. For each message sent or received across
the network, we recorded both the message type and the message byte count. At the end of the
simulation, for each message type t ∈ {ping, backconnect, query request, query response, . . .} and
direction d ∈ {received, sent}, each node returned to the simulation manager the total number of t
messages in direction d and the average byte size of the message group. We were then free to gather
any statistics we wished from this data corpus.

With the notable exception of block transfer messages, most messages in a Kudzu network can
be expected to be fairly small (under 100 bytes) and able to fit inside a single TCP packet. Thus, to
calculate that actual number of bytes transmitted across the wire, we add a standard 20 byte TCP
header and a 20 byte IP header onto the size of each Kudzu message. Due to the small size of most
Kudzu messages, these headers have a significant impact on the network’s total bandwidth usage.

52

5.1. EVALUATION METRICS 53

5.1.2 Query Recall

Since one of the primary goals of Kudzu was an effective method of autonomously organizing the
network, we needed a metric corresponding to how effective a given organization policy actually was.
Let N = {n1, n2, . . . , nk} be a network of k nodes where a node ni = {Fi, Qi} is comprised of a
set of files and queries. We define query recall or simply recall as the number of possible query
matches observed during a test over the total number of possible matches in N . More formally, for
a network of predefined users N , starting network configuration C (including the maximum TTL
setting), and organization policy P , we have the following query recall R:

R =
matchesObserved(N,C, P)

matchesPossible(N)

We assume that N in configuration C is connected; in practical terms, this means that every
query in Q =

⋃
iQi has the potential to be matched against every file in F =

⋃
i Fi. Since we know

the entire network N before we begin the simulation, we can calculate matchesPossible(N) offline
by simply checking every node’s query against every other node’s fileset and tallying the number
of matches. In theory, we could write a network simulator to calculate matchesObserved(N,C, P)
offline as well by simulating network activity according to N , C, and P and measure the results.
However, due to the variety of timing issues and unexpected network events that may be encountered
during an actual test, we opted to calculate this value from live experiments.

We define a single match as a matching of a single file to a single query, not a single node’s
matching of a single query. This means that if a node n has 20 files that match a given query q,
n will report 20 matches to q, even though those 20 results are returned in a single message. The
rationale for this is that query matches that return many results are more important than those
that return few results; a peer’s query that returns 50 results from a single node is probably more
useful than one that returns only 10 results from two nodes. Another issue we needed to consider
was query duplicates, due to the fact that in the dataset, nodes often issued the same query several
times in rapid succession. We opted to allow the duplicate queries (and thus allow their results
to be tallied multiple times) on the basis of two notions: one, that queries that are issued many
times are probably more important to the user than those that are not, and two, that organization
policies acting on query matches returned or queries issued may cause the network topology to
change between duplicate queries, causing different results to be returned from new queries than
from earlier identical queries.

During the actual simulation, each node tallied the matches it received from other nodes and
the matches it sent to other nodes. At the conclusion of the simulation, these two sets were re-
turned to the simulation manager. Under perfect conditions, the sum total of all matches sent and
received across the entire network should logically be equivalent, since every match registered as
sent will subsequently be registered as received. In practice, of course, this is rarely the case – some
PlanetLab nodes cannot reach others, and timing issues often mean that some nodes complete the
simulation and exit before matches found by lagging nodes can be received. To calculate the value of
matchesObserved(N,C, P), we first gather all sets of received and sent matches and add one match
for every matching pair of a received and sent match. Once this is done, we are left with a set of

54 CHAPTER 5. EVALUATION

unpaired sent matches and a set of unpaired received matches (the latter may occur when nodes fail
to report back to the manager at all after the simulation). We opted to add the number of unpaired
sent matches to the total number of matches, though this generally adds less than 5% to the total.

5.1.3 Download Speeds

Finally, we wished to measure file download speeds, primarily to serve as a comparison to speeds
observed in the same transfers when conducted through BitTorrent. This is simply an issue of
setting up a download swarm and timing the nodes downloading the file (along with the average
transfer speeds). A cumulative distribution function of download completion times serves well as a
comparison of the same peers downloading the same file on either a Kudzu or a BitTorrent network.
To ensure that the two networks were on a relatively even playing field, we set Kudzu’s chunk size
and block size to BitTorrent’s defaults of 512 KB and 16 KB, respectively. Though we were unable
to determine BitTorrent’s default request pipelining policy, we ran Kudzu with a fixed pipelining
setting of 10.

5.2 Dataset Peer Selection

An important consideration for the bandwidth and query recall tests was how to select the roughly
500 peers to simulate from the 3500 users in our dataset [12]. One problem we quickly encountered
was much of the dataset was quite sparse; many users were sharing few files and most issued a very
few number of queries. We suspect that this is due in large part not the users themselves but to
the method in which the dataset was gathered; though the dataset spanned a period of 3 months,
most of the users captured during that time were probably only active during a tiny fraction of that
period. We initially selected our simulation peers randomly, but this resulted in an average of only
3 to 4 queries per simulated node; though our simulations took far less than 3 months to run, this
still proved to be insufficient data. To compensate, for each peer p with f files and q queries, we
assigned p a score of (f + 100 ∗ q) and then ranked all peers by their scores (we decided on a query
factor of 100 since our original average number of files was roughly 100 times the average number of
queries). We then imposed a minimum of 50 files and 5 queries per node and selected our simulation
peers from the resulting ordering. Approximately 400 of the 3500 peers fit these criteria; once these
400 were assigned, we removed the minimum file and query cutoffs and selected the final (roughly
100) peers according only to the ranking score.

One reasonable concern is that the handpicking of our users from the dataset skewed our results
unrealistically – after all, all of the users in the dataset were equally ‘real’, so only using a particular
subset seems potentially harmful. Our rationale for this stems from the fact that in all likelihood,
most of the users in the dataset only resided on the network briefly before leaving. The prevalence
of short-lived, fairly inactive users is harmful to our experiments because our dataset does not have
peer lifetime information. As a result, each user we select for the simulation resides on the network
for the entire duration of the simulation, even though the actual user was probably observed on the
network only briefly. This has the effect of greatly thinning out the amount of traffic in a given

5.3. BANDWIDTH MOTIVATION 55

simulation run relative to the amount of traffic actually observed when the dataset was captured.
Selecting the most active nodes is an imperfect solution to this problem but serves to compensate
for this undesirable thinning effect. Furthermore, while the users we select is skewed towards those
most active, since we do not modify any data on a per-user basis, each user itself remains a source
of fully realistic data.

Our timed tests were performed with a time factor of 100,000, resulting in a raw simulation time
of roughly 2 minutes – this simulation time was actually substantially smaller than the time required
to contact all peers, assign files and queries, and perform other simulation setup needed. Each test
run took roughly 20 minutes from the time the central manager was started to the time the results
were received.

5.3 Bandwidth Motivation

Recall from our discussion of TTL in Chapter 3 that we assumed the network is organized like
a tree in which every hop would reach (c − 1) new peers, where c is the number of connections
maintained per peer. Of course, a real network does not form as a tree, but will instead contain
many cycles. Cycles are beneficial in that they provide important redundancy in the network; this
keeps the network connected even as peers come and ensure that queries are not dependent on single
peers to reach other parts of the network. However, they can also result in wasted bandwidth by
allowing a single query to be routed to a single recipient node multiple times. While filtering out
these duplicate queries is straightforward at the destination node, every duplicate query received is
a waste of bandwidth.

We initially explored what would happen if we did not restrict TTL at all but instead allowed
queries to propagate throughout the entire network. By our earlier analysis, we already expect
uncapping TTL to be highly bandwidth intensive and probably unscalable, as each new query on
the network results in an increase in the amount of traffic every node has to handle. However, we did
not take into account the wasted bandwidth derived from duplicate queries. In an early experiment,
we decided to measure the impact of these duplicates. We started a network of several hundred
nodes and had each node send randomly generated queries at frequent intervals, then periodically
sampled the number of times a single query was received by a particular node. This gives us a ratio
of the number of new, unique queries received to the number of duplicate queries received. The
results of this test are shown in Figure 5.1.

We see that while the unique query rate was fairly volatile, during most of the test it stayed
around 25%. This means that on average, each query was received 4 times by each node, resulting
in 3 wasted query messages for each useful message. Furthermore, note that this 75% inefficiency
accumulates on top of the already exponential network bandwidth incurred by having every node see
every query. Soon after observing these results, we ceased working with complete query propagation
and instead turned to studying the impact of particular TTL settings on a network.

Our initial bandwidth test aimed to verify that the total bandwidth used by the network would
be exponential in the max TTL setting. We ran the dataset simulation on PlanetLab once for each
max TTL value through 10 and calculated the aggregate bandwidth used by the network. This

56 CHAPTER 5. EVALUATION

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

U
n
i
q
u
e

Q
u
e
r
i
e
s

(
%
)

Elapsed Time (sec)

Unique Query Rate

Figure 5.1: Unique query ratios in a network with uncapped TTL.

includes query requests, query responses, and any other messages exchanged on the network. Note
that it does not include any downloads, since for these tests we did not actually initiate any file
transfers when matches were received. Our results are shown in Figure 5.2. A random network
organization was used with a minimum connection setting of 3 and a maximum connection setting
of 4. These values were chosen to provide a full range of minimal network coverage to near-complete
network coverage as the max TTL increased to 10. Furthermore, these values are typical real-world
settings – the original Gnutella employed 4 connections per peer.

We see from the curve that bandwidth usage increases significantly more than linearly in the
TTL; its exponential tendency is particularly pronounced up to TTL 6. More variation is present at
higher TTL values, though this likely has to do with the size of the network – with 3 to 4 connections
per node, some queries start reaching most of the nodes in the network around TTL 7 and may stop
propagating in less than the maximum number of hops. However, the aggregate bandwidth continues
to increase steadily along with TTL. This confirms our hypotheses about the role of TTL in network
scalability; that is, increasing the TTL enough for queries to cover an entire network is an unscalable
proposition as we allow the network to grow. Though the absolute bandwidth usage in our test is
fairly modest, this is subject both to the fact that our network is only modestly sized by current
standards and the fact that each of our simulation nodes averaged only 10 to 15 queries over the
entire simulation. In a real network in which users are constantly joining to issue queries, higher
query rates are quite likely.

5.4. ORGANIZATION STRATEGIES 57

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6 7 8 9 10

B
a
n
d
w
i
d
t
h

(
M
B
)

Max TTL

Aggregate Bandwidth

Figure 5.2: Aggregate bandwidth usage across a range of max TTL values.

5.4 Organization Strategies

Given the link between TTL and bandwidth usage, the goal is to maximize query recall while
minimizing the TTL (and thus bandwidth usage as well). We investigated the effectiveness of four
different organization policies, which we detail here (see Section 3.3.1 for a description of the general
policy types). Recall that we refer to the minimum number of peer connections as MIN and the
maximum number as MAX. For all of our tests, we set MIN to 3 and MAX to 4.

• A fixed policy with random organization. For this organization, the manager assigned each
peer in the simulation at least MIN and no more than MAX other peers to connect to. The
selection process consisted of randomly picking two peers from the pool of peers with less than
MAX assigned connections and pairing them, then repeating until all peers had at least MIN

connections or no further pairings were possible. This process was entirely executed on the
central manager, which simply informed the simulation nodes of their connections once all
pairings were complete. Note that in a real network, peers usually join through a small set of
public nodes, resulting in a non-random network. Thus, this policy is unrealistic in practice.

• A naive organization policy with a single entry node. This is effectively the simplest possible
realistic network, as everyone joins the network through a single publicized entry node and
then finds other peers through that peer without any particular selection criteria. Connections
are chosen to be established or disconnected randomly so as to maintain between MIN and
MAX connections per node.

58 CHAPTER 5. EVALUATION

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9 10

B
a
n
d
w
i
d
t
h

(
M
B
)

Max TTL

opt1
random
tfidf
naive

Figure 5.3: Aggregate bandwidth usage versus max TTL for each of the four organization strategies.

• An optimal policy within a single hop (we refer to this policy as OPT1). This is a fixed policy
in which peer connections are chosen to maximize the number of matches that will be received
within a single hop. Before the test begins, the manager calculates all matches between node
pairs, then ranks the pairs according to the number of matches. Connections to assign are
then chosen in order (within the constraints of MIN and MAX) in the same manner as the
first strategy. This is clearly an impossible policy to implement in a live deployment, since
it requires knowledge of queries not yet issued – however, it shows the gains of organizing
optimally among a node’s direct neighbors.

• The TFIDF policy described in Chapter 3. This is our second realistic policy – nodes enter
through a publicized entry node and then begin exploring the network, choosing connections so
as to maximize the sum TFIDF score of the node’s peers. No manager or central intervention
is required to implement this policy.

5.4.1 Policy Bandwidth Use

We first calculated the amount of bandwidth used by each of the four strategies to determine the
baseline relationship of TTL and bandwidth use. The aggregate bandwidth used in each of the
policies over 10 runs of increasing TTL values is given in Figure 5.3.

Although the general exponential trend is evident across all four of the organization schemes, the
most striking difference is the extra bandwidth used by TFIDF organization. This is a result of the

5.5. QUERY RECALL TESTS 59

bandwidth required in transferring the file stores required to calculate TFIDF values. Recall that a
node’s file store is the set of all of the words in its filenames and their associated frequencies. Given
that we sorted virtual users partially by the number of files they contained, it is unsurprising that
many of their files stores were large. Consequently, constantly transferring large filestores across the
network during exploration expended a considerable amount of bandwidth.

However, the bandwidth used by this exploration does not disqualify TFIDF outright. Explo-
ration occurs at a fixed rate per node and has no impact on the exploration conducted by other
nodes; in other words, exploration adds only a constant amount of bandwidth per node, or an aggre-
gate linear increase in the size of the network. Our data corroborates this; the difference in aggregate
bandwidth between TFIDF and the others at TTL 1 is roughly the same as it is at TTL 10 (and
those in between). There is a fair amount of variability owing to the randomized nature of network
exploration, but we would expect the percentage of the network’s overhead consumed by exploration
to decrease as the network is scaled up in size, owing to the increasing dominance of query traffic.

Naive organization consumes a small but noticeable amount of bandwidth more than random or
OPT1 at lower TTLs. Similar to TFIDF, this is due to the node exploration that the naive policy
requires in order to find new connections. However, once peers are located, file stores do not need
to be exchanged, explaining why the overhead incurred by naive is much less than that incurred by
TFIDF. At higher TTLs, however, naive organization begins to see less bandwidth usage; this is
explained by network fragmentation, which we address more fully in the following section.

5.5 Query Recall Tests

For the same set of tests, we calculated the query recall for each of the four organization strategies
across the range of TTL values. The results are shown in Figure 5.4. For OPT1, random, and
TFIDF, we see the expected trend towards 100% recall as TTL increases. We found that the
average number of connections per node in each of the tests tended strongly towards MIN rather
than MAX. Thus, assuming that we have an average of 3 connections per node, with a TTL of 9 we
know that queries can reach up to 3 ∗ 28 = 768 nodes; since we have roughly 500 nodes, we expect
that this should be sufficient to reach most of the network (taking into account cycles, PlanetLab,
and so forth). The unreliability of PlanetLab means that we cannot expect to actually obtain 100%
recall, but the fact that recall passes 90% at TTL 10 indicates the trend towards perfect recall.

OPT1, as we expect, does well at TTL 1 (and continues doing well up until TTL 4) relative to
the other strategies. Given that it is premised entirely on 1-hop locality, it is understandable that
its advantage disappears at higher TTLs. Even at low TTLs, however, It does not do as well as one
might expect. Since it is optimal within 1 hop, we can conclude that query responses were generally
spread across many nodes rather than localized to only a few. This is because with approximately
MIN connections, only about 10% of potential query responders could be placed within a single
hop. This result suggests that a reasonable TTL is always necessary to avoid crippling query recall
even with an arbitrarily powerful organization scheme. However, this result is also due to the fact
that we picked the virtual users with the heaviest load – in earlier tests of randomly selected virtual
users, we observed recall as high as 20% for OPT1. It is not surprising that a sparser network allows

60 CHAPTER 5. EVALUATION

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

R
e
c
a
l
l

(
p
e
r
c
e
n
t
a
g
e
)

Max TTL

opt1
random
tfidf
naive

Figure 5.4: Query recall versus max TTL for each of the four organization strategies.

a greater percentage of the total queries to be found with the same number of connections.
TFIDF and random organization perform comparably throughout. While it is unfortunate that

TFIDF does not appear to lend a significant benefit over random organization, it is important to
note that the random organization scheme cannot easily be implemented in a live network. More
specifically, since the users in a real network are not known before they join, ensuring a random
distribution of connections is difficult. Our TFIDF scheme, however, does not assume any unrealistic
capabilities and could be applied to any live Kudzu network.

The most interesting result of this graph, however, is the extremely poor overall performance of
naive organization combined with the spike at TTL 8. At first glance, it is surprising that naive
performs worse than random, much less significantly worse. Explaining this discrepancy was the
next part of our investigation, which we discuss below.

5.5.1 Network Organization

Since our strategies were designed to organize the nodes in the network so as to maximize recall,
it made sense to examine the actual structure that the networks took using the various organiza-
tion schemes. We were doubly interested in examining this structure after seeing the performance
discrepancy between naive organization and random organization, from which we initially expected
similar performance.

To determine the structure of the network at a given point in time, we issue a special traversal
message from a start node to all its neighbors, which each then forward the message along like a

5.5. QUERY RECALL TESTS 61

usual query. However, unlike a query, we impose no TTL on the number of hops and send responses
from every recipient node containing a list of the node’s current connections. Once all responses
have arrived at the initial node, it has enough information to reconstruct the entire network. Note
that in the case of the dynamic organization schemes (naive and TFIDF), this will not be an exact
snapshot, since links may change partway into the traversal, but the traversal time is short enough
to give a good approximation.

What we found after investigating the behavior of a naively organized network was the presence
of two factors contributing to poor recall:

1. Fragmentation. One issue was that pieces of the network would sometimes break off from
the main network and form a smaller separate network. This is obviously highly detrimental
to query recall, as queries from each of the subnetworks cannot reach each other, resulting in
many potential matches that can never be fulfilled. Fragmentation is likely in the naive scheme
due to the fact that the entry node does not maintain any more connections than each of the
other nodes. A series of new nodes arriving at the same time will request new peers from the
entry node, and these new peers will be selected from the same small set of peers that are still
connected to the entry node. Later-arriving peers will then arrive at the entry node, causing
its existing connections to be reshuffled. This reshuffling may cause a small group of highly
interconnected nodes to break off if their only connections to the primary network are through
the entry node (whose connections are highly volatile due to new arrivals).

2. High network diameter. The fragmentation that we observed was generally fairly limited.
The larger problem we found was that the diameter of the network (that is, the maximum
number of hops from any node to any other node) was quite high in the naive strategy. With a
high network diameter, the TTL required to reach most of the other nodes in the network will
increase, resulting in poor recall. The cause of a high network diameter may be understood
as a less severe version of fragmentation: highly clustered sets of nodes effectively waste many
of their connections making cycles to other nodes in the same cluster rather than connecting
to other parts of the network. Even if the cluster remains weakly connected to the rest of the
network, queries entering the cluster will spend several hops without encountering many new
nodes.

One of the networks measured during a naive test run is shown in Figure 5.5. Though this
particular snapshot did not reveal any disconnected components, the network is clearly unbalanced
and contains several tightly clustered pieces with few connections to other parts of the network; one
such cluster is indicated. Note that for the five primary nodes in the cluster, queries with a max
TTL of 3 will reach only 9 other nodes. Assuming that nodes are evenly distributed between having
3 and 4 connections, we’d expect queries in the general case to reach 3.5 ∗ 2.52 = 21.9 or roughly 20
other nodes; thus, this isolated cluster is clearly functioning at a deficit relative to the TTL.

The conclusion we draw from our recall results is that the naive organization strategy results in
a poorly distributed, unbalanced network. This means that at the same TTL as a different scheme,
queries reach fewer nodes in the network. The spike observed at TTL 8 is presumably a fluke; the

62 CHAPTER 5. EVALUATION

12811941210

2021416234

143107111235

1281146363

1399190239129977412

129237161193

134342464

1281146316

1291051537

200133215142

152149258

12831113

122111591

19511316183

198133224149

1282388864

12819554161

133174163

21924320029

13713280110

1943610154

1399190238

193635871

14215023812

1292421129

1692295012

13037198243

1371651114

13014949136
13083166200

193157115251

13083166199

157181175249

124612915
21012339103

1924283253

13713280105

16410712712

12831114

2101258417

15598355

17014011969

1288126111

13125420811

193167187186

130192157132
200132070

1526624448

1342172252

1412134201

751309612

13824699249

1632211173

15598353

13023750124

12811941211

1923390196

1944217124

12813820745

1935419241

132170332

1309270253

2131311101
138151055

130192157131

136145115196

137991186

1371651113

19317415526

1951165323

1992625469

1282521920

1295988180

1921612512

133174162

141212113179

21319160194

19262632

20214116142

1951165325

128232103201

21924320093

1411612033
19511660131

129747415

19511660211

15231384

217980145

137226138154
8825565220

13118844100

193196399

1282084198

1465724998

198175112108

220245140196

206117377

193157115250

15024458161

1935511240

19262631

128192101217

19313616656

155246121631921612511

150254212148

140127208238

141212113178

169229503
140192249203

139191425

1981285612

192339069
192339066

1282521922

16110624018

14320517212

20317813311

1282275682

208117131116

15524612164

19882160239

1942917813

1288415445

1371651115

1936205

12910120194

1692295014

138151056

2041784164

1282202314
193106436

19411720214

1312154572

12911012552

15014014093

1647347242

19314421130

14024760126

156171052

19317467187

3592726

169229508
1943610156

141764517

2089463193

198133224145

15656250227

12993229138

13124619201

129170214192

1292215029

15524547242

1521598227
1311795070

1953716101

1581306253

169229507

12822024729

139191424

128208499

193637521

14011916484

1923321017

1931963910

1921233100

1281115263

2001915935

128101952

14120103211

1923321016

136145115194

14011242158
206117379

139191421

12108127136
206117374

138238250157

14011210782

169229509

1951166067

13013625422

1992625466

12816314221

14124249129

1281121393

1478330164

208117131115
1282084199

140192249204

1282084197

150254212147

19416725418

13013625421

3592727

20317814328

13124619142

2001915934

13824699250

1284214242
1309270251

139191423

13124619141

19317415527

139191422

1371899718

1281115264

1312472247

13014949137

2031781333

21924320097

192339067
1951166098

14215023813

12918620579

2052111832

1579244101

151979225

141764518

14324813955

20317813310

1511005910

132170333

12910820210

13113032155

134151255180

198133224147

195130121204
130758783

1326823734

1291051536

14210322
64161102

198133224146

160193163102

129237161194

143225229238
200133215141

206117375

1921233102

137226138156
13896250151

2041232855

1284214243

12813511149

14324813956

1411612032

12823325211

13823266194

1309270254
128101953

130758784

1412433192

1312472241

12883122161

134768192
1581306254

1311149127

134342465

13825121477

14722910250

13113032154

19511660132

13113032152

19317467186

5819315268

151979224

130206158140

1309270252

13223917225

122111592

169229504

12819554163

16923524133

198175112105

2052111834

15524547241

13223917224

16410712713

1692295016

2041232856

128187223212

15231385

12108127138

128112139108

19241135219

143215129117

14024760123

16923779211

2048519111

193167187187

193120127

20317814310

137991187

1478330166

14011479231

12924219196

14210421241

13896250149
723611274

12924219197

13265240102

2048519110

13810012148

130188531

1296921096

128222364

12883122162

20620724834

1304922141
15281475

21012339168
202389969

2022493767

12822024728

2101258415
193637519

1312472242

20017202194

13118844101

13825121478

12108127137

15014014091

14010917181

139191426

128222365

142150378

1935511241
1465724999

1292130117
1282238112

1931170135

2122014482
2121178151

1296921097

1371899717

128222363

19425421511

14210421245

13265240100

1281115262
1288415471

1288415444

141219252132

192424323

19261050

17014011970

1692295011

220245140197

13823266195

147102224228
1311149126

1281146315

202389968

143107111234

12883122181

1921971212

14011242159

131175179

1282275681

13896250150

19511660212

15281474

2048155227

1285920226
1311751710

193637518

140127208239

1603657172

212235189114
15231382

19425421512

156171051

19262633

1371899831

195130121205

129137253252
1412433162

13083166198

1281146364
2089463194

2131311102

1282202312

1371651112

1992625467

129747420
1311795072

12811213980

1292215078

160193163101

13315592

1631172534

1295988179

1292130116

129137253253

129747416

12811213975

138238250155
1935419242

12813511152

1603657173

14210321

1951166097
217980144

1992625468

1286192158

1312472245

192424322

13223917226
19882160238

13113032153
1944217123

195371697

15656250226

19511316182
20620724835

21012339102

190227163141

2041784163

1632211172

198175112107

193167187185

1951165322

1647347244

16923779210

12918620578

128187223211
1281121392

13896250143

1292421126

1471023117

2031781332

2122014481

193106435

1282202315

1692295010

204560138

193136227163

12910820211

19313619126

147102224227

1284214241

1312154571

190227163142
15598356

2022493769

169229506

1288415449

13125420810

19416725419

12910120193

19320521574

1924283250

155225271

14011210780

1478330167

19241135218

F
igure

5.5:
N

etw
ork

topology
resulting

from
naive

organization.
N

ote
the

w
eakly

connected
cluster

in
the

upper
right.

5.5. QUERY RECALL TESTS 63

most likely cause is that some small set of auspicious connections formed bridges to otherwise remote
portions of the network, alleviating the high network diameter observed in the other nine runs and
resulting in comparable performance to the other organization strategies. Given that this behavior
only occurred once out of ten runs, however, it seems that a severely unbalanced network is the
most likely outcome. The reduced bandwidth observed in the naive strategy is also explained by an
unbalanced network. Since queries encounter fewer unique nodes, more cycles occur, thus resulting
in discarded rather than forwarded queries as nodes are visited multiple times.

Exploration Strategies

Given that the overall cause of poor naive recall was an unbalanced network, we investigated how a
simple organization scheme could be made more balanced. When a node needs new connections, it
requests new peers from one of its neighbors. Optimally, the new peers that are returned are selected
randomly and uniformly from the set of all possible peers (as is the case in the random organization
strategy). Given that nodes have incomplete information in a true network, this optimal behavior is
not possible. However, a node can approximate optimal behavior fairly well if it modifies the way in
which it returns new peers. Under the original scheme, peers are returned from the set of currently
connected peers. If a peer conducts its own exploration and returns peers from a list much larger
than just its present connections, the overall peer connection distribution will be much more evenly
distributed. We summarize the two exploration strategies as follows:

• Passive exploration. When a node n requests new peers from another node m, return
randomly selected peers from the set of peers currently connected to m.

• Active exploration. Perform periodic exploration of the network by contacting a known peer
and adding all of its connections to a growing list of known peers. When a node n requests
new peers from another node m, return randomly selected peers from the peer list compiled
by m.

We ran tests of naive organization with both passive and active exploration and took snapshots of
the resulting network topologies. Snapshots for passive and active exploration are given in Figure 5.6
and Figure 5.7, respectively, with all nodes in the network arranged in a ring.

Passive exploration clearly results in a significantly more unbalanced network than active explo-
ration; Figure 5.6 exhibits both significantly larger coverage gaps in the ring topology and groups
of nodes with high degrees of interconnectedness. Some of these features are noted in Figure 5.8.

Given that attempting to randomly balance the network has such a striking effect on naive
organization, a natural question to ask is whether it would have a similar effect on other organization
strategies. Note that the TFIDF strategy already performs what is effectively active exploration
to build a peer ranking, with the added aspect of file store requests to peers added to the ranking.
However, our TFIDF strategy still returns new peers to requesting nodes using the passive method;
the full ranking list is used only by the compiling node itself to decide on its connections. Thus, the
distinction between passive and active exploration can be applied to TFIDF organization as well as
to the naive organization. To see what effect this would have on TFIDF organization, we reran the

64 CHAPTER 5. EVALUATION

169229504

14011210782

1371651112

192339067

2031781332

15014014093

12924219196

137226138156

1311795070

12924219197

193106436

1296921096

1992625469

156171052

13113032155

1292421126

13265240102

19416725419

20017202194

12911012552

13223917224

1981285612

1296921097

1951165322

12831114

12108127137

138151056

193637519

21924320097

169229508

1581306253

1312472241

193637518

1309270254

12813511149

1942917813

13014949136

1312472247

129747419

1631172534

13265240100

2001915935

19241135218

13896250143

16923779210

193167187188

128187223211

20214116142

19317415526

13124619142

130192157131

1951166067

1309270251

8784153114

15524612164

13113032153

1371651113

14210322

1288415471

2048519111

1923390196

19262632

751309612

1282202313

1951165323

12822024729

1282084199

19511660212

1292421129

129237161194

1411612032

1935419242

13037198243

12816314221

217980144

200133215141

13013625422

1292215029

198133224146

1511005910

157181175249

12819554163

128222365

12819554161 129747415

136145115196

140127208238

1924283250

12911012551

1478330167

12843612

1692295011

1295988180

128101953

142150378

131175179

143248139171

15524547242

5819315268

2048519110

2022493769

13223917225

1603657173

138151055

16410712712

122111591

128187223212

19262631

1291051537

128222364

1692295010

1371651115

129137253252

1284214242

13223917226

14215023812

12816314220

20620724835

1632211174134768191

13825121478

1478330164

1311795072
14324813956

14010917181

193637521

19320521574

147102224227

14210421241

1292130116

141212113178

1632211172

132170332

1282275681

1943610156

2122014481

19882160238

169229507

20317814310

1281115263

13113032152

15656250227

160193163102

1465724998

143225229238

2089463194

19882160239

1935511240

1282202314

14215023813

1511005911

15524612163

1944217123

169229505

1692295012

1399190239

13823266194

1281146315

13315592

2052111832

19511660131

212235189114

1281121393

14011916484

1647347242

12813820745

1921612511

130758783

2122014482

141764518

1281121392

13083166200

140192249203

1921233102

1935511241

1951166097

1288415444

141149218208

2121178151

1282238113

217980145

16923779211

13824699250

137991187

169229506

15024458161

21012339168

12910735132

12910820210

723611274

2031781333

193635871

2101258417

134768192

193167187186

1312472242

1465724999

200132069

139191426

12823325211

1921612512

1309270253

193136227163

1291051536

193157115250

1412433162169229503 14324813954

3592726

15231385

134342464

12883122179

204560137

141212113179

128112139108

208117131115

1936205

13113032154

206117377

14011479231

12993229138

152149258

1942917814

193167187187

1285920228

21924320029

133116171

198175112105

1281115264

12910820211

1282521922
1309270252

1632211173

2041232857

192424323

192424322

169229509

1921971212

13014949137

138238250155

1282238112

133174163

1474621668

8825565220

1292130117

12108127136

14124249130

1311751710

198175112108

1521598226

1412134201

139191424

1281146316

130206158140

2022493767

12822024728

12811941210

1282521921

19425421512

139191423

12831113

17014011969

1412433192

150254212147

1284214241

19411720214

12813511152

19425421511

156171051

1326823735

1285920226

1292215078

12918620576

21012339102

13124619141

1284214243

12883122181

137991186

208117131116

129747420

206117379

1924283253

1692295013

130188531

134342465

13125420810

1371899718

202389969

16110624018

1371651114

19313619126

1943610154

141219252132

1992625468

1282521920

136145115194

133174162

13713280110

198175112107

1951166098

13713280105

19241135219

2131311102

15231382

204560138

12883122161

13125420811

14210321

155225271

12910120194

140127208239

1282084197

2021416234

1304922141

13013625421

193167187185

14320517212

1281146364

2048155227

198133224145

14024760126

137226138154

1647347244

128222363

2169810230

13810012148

193157115251

1581306254

128101952

1282202315

1288415445

2131311101

13896250150

14124249129

15231384

1579244101

13713280106

2001915934

141764517

130758784

128192101217

1923321017

1282275682

14324813955

139191422

129170214192

19416725418

20317813310

20317813311

17014011970

15014014091

1935419241

19511316182

192339068

12823325212

1944217124

3592727

2041232855

12811213980

129747416

1992625466

1281146363

128208499

19317467187

193120127

13824699249

14011242159

1286192158

1326823734

2052111834

15598356

15598353

1285920227

16923524133

64161102

198133224147

12910120193

1288126111

2041784164

1281115262

20620724834

129977412

1371899831

21924320093

1288415449

160193163101

2089463193

14024760123

12811941211

1321872301

1921233100

1953716101

12108127138

1692295016

15281474

1603657172

14722910250

1311149126

1923321016

14210421245

1399190238

132170333

195371697

8784153115

13118844101

21010724950

143215129117

15524547241

1342172252

122111592

19313619125

1692295014

1371899717

1295988179

19511660132

20317814328

150254212148

143107111234

1281436130

141149218209

13825121477

14120103211

1478330166

129137253253

139191421

140192249204

2041784163

13118844100

15656250226

19262633

19317415527

19313616656

193106435

193196399

138238250157

200132070

1371899830

1311149127

130192157132

1951165325

1282084198

151979224

128193337

16410712713

220245140196

151979225

15598355

1411612033

12918620578

12918620579

198133224149

165918322

143107111235

1992625467

124612915

12883122162

1931963910

200133215142

195130121205

13896250149

206117374

2169810229

19261050

13823266195

1312154572

1282202312

13023750124

193635870

192339069

15281475

21012339103

206117375

2041232856

19511660211

134151255180

1526624448

1471023117

192339066

19317467186

21319160194

1312472245

1931170135

147102224228

2101258415

1312154571

128232103201

19511316183

139191425

13896250151

14011242158

Figure 5.6: Circular network topology resulting from naive organization with passive exploration.

128192101217

2022493769

14011210782

147102224228

220245140197

1371651112

19317467186

1284214242

12811213980

19511660132

19882160238

15014014091

12918620578

1281146315

21924320097

20214116142

1311795072

14210322

12816314220

13896250150

14215023812

12910820211

16923779210

128112139108

128222365

1282521921

132170333

19317415526

19511316183 129747416

128187223212

1292421129

14124249130

2041784164

12819554161

1311795070

1288415444

1935511241

192424323

200133215142

1924283250

124612915

1312472245

15524547242

1342172252

13824699250

1284214243

200133215141

1951165322

133174162

2052111832

13810012148

141764517

1511005911

137226138156

1921233102

193637521

1692295014

140192249203

15656250227

1282521922

134342464

128222364

141212113178

2031781333

15598353

1521598226

19313622716313265240102

17014011970

19313616656

12843612

20317814310

12811941211

141149218209

2048155227

12822024729

12993229138

1942917814

139191422

1326823735

1288126111

19262632

13125420810

13023750124

19511660211

137226138154

20017202194

14024760123

193635870

13083166200

17014011969

1371651114

1921233100

12822024728

13825121477

21012339102

19425421512

1282275681
13265240100

13083166199

15024458161

1935419241

1311149127

21924320029

128232103201

1412433162

19262633

1285920228

1511005910

13223917226

14215023813

14320517212

140127208239

1292130116

1309270252

1312154572

13118844101

1603657173

12823325212

14210421245

192339069

2089463194

1478330166

14011242158

1312154571

129237161193

1981285612

1282202313

1282202312

129747419

122111591

1944217124

132170332

13713280105

1292215029

1412134201

13713280106

1281146316

1692295011

204560137 1942917813

1465724998

206117377

1951166097

19241135218

14011916484

1931170135

1281146363

1288415445

3592727

1371899718

14124249129

133174163

12816314221

150254212147

206117379

198175112105

12911012551

139191423

1647347242

128193337

1992625467 15231382

1304922141

1603657172

14722910250

12108127138

1411612032

2041784163

1632211173

1992625468

202389969

128232103203

192339066

128101952

1371651113

138151056

12819554163

200132070

136145115196

13113032153

122111592

2048519110

2131311102

1285920227

20620724834

14120103211

1923321017

193157115250

2001915935

1371899717

1291051536

2169810230

12883122161

193157115251

2001915934

1292215078

64161102

1282238112

1286192158

13014949137

1692295010

1931963910

2031781332

1285920226

15598356

198133224146

1632211174

134151255180

8784153115

12831114

130188531

147102224227

21012339103

13124619142

206117374

14024760126

16923779211

14010917181

134768191

130758784

8825565220

12910735132

134768192

1412433192

212235189114

169229509

2052111834

129170214192

192339068

1951165323

13896250151

19416725418

13315592

1951165325

12108127137

12924219197

198133224149

13713280110

723611274

13113032154

1292130117

1465724999

1281115262

130758783

128187223211

1411612033

128208499

1647347244

13824699249

12918620579

138238250155

1631172534

193106435

1692295013

20317813310

13823266195

1281115263

1581306254

193167187188

198133224147

19261050

2022493767

139191426

13013625421

19511316182

13896250143

12823325211

1951166067

1921612512

193106436

12910820210

1371651115

140127208238

217980145

13037198243

1526624448

12924219196

20620724835

1309270251

15281474

1581306253

136145115194

20317813311

1953716101

1295988179

1281146364

1944217123

1951166098

16110624018

8784153114

2041232856

142150378

1282521920

1474621668

1282084198

1288415471

15656250226

143107111235

1371899831

139191425

198175112108

1923390196

193167187186

1692295016

13014949136

1943610156

1281121393

1281115264

143107111234

12911012552

21319160194

1478330164

2101258415

1281436130

2041232857

15524612164

1282084197

12883122181

1282084199

19320521574

193196399

1936205

155225271

165918322

1923321016

1282202314

1309270254

19317415527

16410712713

1282202315

1692295012

129137253253

128222363

1281121392

1992625469

14210321

3592726

19511660212

12813820745

2169810229

208117131116

1282238113

134342465

130192157132

14324813956

193167187185

19416725419

13223917225

193637518

195130121205

14324813955

157181175249

751309612

1321872301

14011210780

12108127136

13113032155

217980144

13013625422

1311149126

131175179

13896250149

129137253252

15231385

143225229238

2089463193

1943610154

13125420811

2122014481

13118844100

130192157131

160193163101

193635871

129747420

14324813954

2122014482

128101953

21924320093

1312472247

13124619201

1579244101

206117375

200132069

129977412

208117131115

193120127

141212113179

141149218208

138151055

152149258

2131311101

169229507

220245140196

14210421241

19314421130

1282275682

1921971212

19313619126

141764518

1312472242

1292421126

150254212148

19425421511

192424322

1399190238

169229505

141219252132

15014014093

140192249204

1296921096

20317814328

16410712712 14011242159

169229508

1296921097

195130121204

151979225

137991187

1935419242

15524612163

139191421

19313619125

14011479231

1282388864

19241135219

21010724950

192339067

129237161194

1924283253

160193163102

12910120194

1471023117

193167187187

13124619141

1921612511

1632211172

12910120193

156171052

19317467187

19882160239

13223917224142150377

1312472241

2121178151

1399190239

151979224

169229503

13083166198

1992625466

129747415

195371697

139191424

12811941210

198133224145

138238250157

12883122162

1478330167

1935511240

16923524133

143215129117

1291051537

13823266194

169229504

202389968

1311751710

12813511149

130206158140

1284214241

12813511152

1371899830

12831113

15281475

5819315268

21012339168

19511660131

15598355

15231384

1288415449

15524547241

2041232855

1295988180

193637519

133116171

13825121478

143248139171

19262631

2101258417

1326823734

198175112107

Figure 5.7: Circular network topology resulting from naive organization with active exploration.

5.5. QUERY RECALL TESTS 65

169229504

14011210782

1371651112

192339067

2031781332

15014014093

12924219196

137226138156

1311795070

12924219197

193106436

1296921096

1992625469

156171052

13113032155

1292421126

13265240102

19416725419

20017202194

12911012552

13223917224

1981285612

1296921097

1951165322

12831114

12108127137

138151056

193637519

21924320097

169229508

1581306253

1312472241

193637518

1309270254

12813511149

1942917813

13014949136

1312472247

129747419

1631172534

13265240100

2001915935

19241135218

13896250143

16923779210

193167187188

128187223211

20214116142

19317415526

13124619142

130192157131

1951166067

1309270251

8784153114

15524612164

13113032153

1371651113

14210322

1288415471

2048519111

1923390196

19262632

751309612

1282202313

1951165323

12822024729

1282084199

19511660212

1292421129

129237161194

1411612032

1935419242

13037198243

12816314221

217980144

200133215141

13013625422

1292215029

198133224146

1511005910

157181175249

12819554163

128222365

12819554161 129747415

136145115196

140127208238

1924283250

12911012551

1478330167

12843612

1692295011

1295988180

128101953

142150378

131175179

143248139171

15524547242

5819315268

2048519110

2022493769

13223917225

1603657173

138151055

16410712712

122111591

128187223212

19262631

1291051537

128222364

1692295010

1371651115

129137253252

1284214242

13223917226

14215023812

12816314220

20620724835

1632211174134768191

13825121478

1478330164

1311795072
14324813956

14010917181

193637521

19320521574

147102224227

14210421241

1292130116

141212113178

1632211172

132170332

1282275681

1943610156

2122014481

19882160238

169229507

20317814310

1281115263

13113032152

15656250227

160193163102

1465724998

143225229238

2089463194

19882160239

1935511240

1282202314

14215023813

1511005911

15524612163

1944217123

169229505

1692295012

1399190239

13823266194

1281146315

13315592

2052111832

19511660131

212235189114

1281121393

14011916484

1647347242

12813820745

1921612511

130758783

2122014482

141764518

1281121392

13083166200

140192249203

1921233102

1935511241

1951166097

1288415444

141149218208

2121178151

1282238113

217980145

16923779211

13824699250

137991187

169229506

15024458161

21012339168

12910735132

12910820210

723611274

2031781333

193635871

2101258417

134768192

193167187186

1312472242

1465724999

200132069

139191426

12823325211

1921612512

1309270253

193136227163

1291051536

193157115250

1412433162169229503
14324813954

3592726

15231385

134342464

12883122179

204560137

141212113179

128112139108

208117131115

1936205

13113032154

206117377

14011479231

12993229138

152149258

1942917814

193167187187

1285920228

21924320029

133116171

198175112105

1281115264

12910820211

1282521922
1309270252

1632211173

2041232857

192424323

192424322

169229509

1921971212

13014949137

138238250155

1282238112

133174163

1474621668

8825565220

1292130117

12108127136

14124249130

1311751710

198175112108

1521598226

1412134201

139191424

1281146316

130206158140

2022493767

12822024728

12811941210

1282521921

19425421512

139191423

12831113

17014011969

1412433192

150254212147

1284214241

19411720214

12813511152

19425421511

156171051

1326823735

1285920226

1292215078

12918620576

21012339102

13124619141

1284214243

12883122181

137991186

208117131116

129747420

206117379

1924283253

1692295013

130188531

134342465

13125420810

1371899718

202389969

16110624018

1371651114

19313619126

1943610154

141219252132

1992625468

1282521920

136145115194

133174162

13713280110

198175112107

1951166098

13713280105

19241135219

2131311102

15231382

204560138

12883122161

13125420811

14210321

155225271

12910120194

140127208239

1282084197

2021416234

1304922141

13013625421

193167187185

14320517212

1281146364

2048155227

198133224145

14024760126

137226138154

1647347244

128222363

2169810230

13810012148

193157115251

1581306254

128101952

1282202315

1288415445

2131311101

13896250150

14124249129

15231384

1579244101

13713280106

2001915934

141764517

130758784

128192101217

1923321017

1282275682

14324813955

139191422

129170214192

19416725418

20317813310

20317813311

17014011970

15014014091

1935419241

19511316182

192339068

12823325212

1944217124

3592727

2041232855

12811213980

129747416

1992625466

1281146363

128208499

19317467187

193120127

13824699249

14011242159

1286192158

1326823734

2052111834

15598356

15598353

1285920227

16923524133

64161102

198133224147

12910120193

1288126111

2041784164

1281115262

20620724834

129977412

1371899831

21924320093

1288415449

160193163101

2089463193

14024760123

12811941211

1321872301

1921233100

1953716101

12108127138

1692295016

15281474

1603657172

14722910250

1311149126

1923321016

14210421245

1399190238

132170333

195371697

8784153115

13118844101

21010724950

143215129117

15524547241

1342172252

122111592

19313619125

1692295014

1371899717

1295988179

19511660132

20317814328

150254212148

143107111234

1281436130

141149218209

13825121477

14120103211

1478330166

129137253253

139191421

140192249204

2041784163

13118844100

15656250226

19262633

19317415527

19313616656

193106435

193196399

138238250157

200132070

1371899830

1311149127

130192157132

1951165325

1282084198

151979224

128193337

16410712713

220245140196

151979225

15598355

1411612033

12918620578

12918620579

198133224149

165918322

143107111235

1992625467

124612915

12883122162

1931963910

200133215142

195130121205

13896250149

206117374

2169810229

19261050

13823266195

1312154572

1282202312

13023750124

193635870

192339069

15281475

21012339103

206117375

2041232856

19511660211

134151255180

1526624448

1471023117

192339066

19317467186

21319160194

1312472245

1931170135

147102224228

2101258415

1312154571

128232103201

19511316183

139191425

13896250151

14011242158

Figure 5.8: Naive organization with passive exploration and noted coverage gaps (shaded regions)
and highly interconnected node groups (demarcated by lines).

66 CHAPTER 5. EVALUATION

same series of topology tests as before with TFIDF rather than naive organization. Snapshots are
shown for passive and active exploration in Figure 5.9 and Figure 5.10, respectively.

Both resulting topologies are somewhat unbalanced, especially when compared with naive orga-
nization with active exploration. In this case, however, an unbalanced network indicates not that the
organization is ineffectual but that TFIDF is accomplishing its goal; namely, unbalancing the net-
work in such a way that recall is improved (or, at least, left unharmed) but forming clusters of nodes
with high TFIDF scores to each other. Although the recall results from TFIDF were not markedly
higher than random, these results suggest that TFIDF is, in fact, accomplishing its intended goal
to some degree.

To empirically verify these conclusions, we reran the full set of bandwidth and recall tests on naive
organization with active exploration. This fifth line is plotted alongside the existing four for both
aggregate bandwidth (Figure 5.11) and query recall (Figure 5.12). We see that aggregate bandwidth
falls in line with random and OPT1 organization and does not exhibit the flatline behavior at high
TTLs present in passive naive organization. Active exploration does expend a small amount of
additional bandwidth over passive even at low TTLs, however; this is understandable, given that
active has to perform a constant amount of exploration per node. Since this exploration does not
need to transfer file stores, however, the expenditure is much less than in TFIDF organization.

Recall exhibits similar trends. The deficiencies in passive naive almost entirely disappear and
the resulting recall performance is on par with the three non-naive organization strategies. While
still falling slightly below TFIDF at low TTLs, performing active exploration appears to make naive
exploration as viable as TFIDF exploration.

Performing active exploration versus passive exploration in TFIDF appeared to have little effect;
though we do not plot a sixth line here, there was minimal change between our original TFIDF results
and those with active exploration. At first glance, these results may seem to mark naive organization
with active exploration as the organization scheme of choice, given its similar performance to TFIDF
without the bandwidth overhead of transferring file stores. However, this ignores the tradeoffs of
performing passive vs. active exploration besides the small bandwidth overhead of active exploration.
In particular, if a peer p has a peer p2 in its list of known peers but is not actually connected to p2,
then p has no guarantee that p2 is still online. For a peer p3 requesting new peers from p, either p may
return stale information to p3 or p will have to manually check that p2 is online by establishing a new
connection and exchanging a message (introducing extra latency and bandwidth into the original
peer request). If passive exploration is used, however, all returned peers are guaranteed to be valid.
TFIDF organization may use passive exploration without harming recall; naive organization, on the
other hand, is effectively forced to use active exploration.

Another significant benefit of TFIDF (or, for that matter, any adaptive organization scheme) is
its implicit incentive model that benefits peers who remain online even when not exchanging queries
by finding more useful connections through continuous exploration and TFIDF ranking. As we tune
TFIDF or explore other adaptive organization schemes that are more effective, the incentive to users
to remain online only increases. Thus, we conclude that naive (with active exploration) and TFIDF
organization both have tradeoffs and neither is a clear winner over the other. A brief summary of
the benefits and limitations of the organization strategies we evaluated is given in Table 5.1.

5.5. QUERY RECALL TESTS 67

1921233102

198133224147

13125420811

190227163141

20214116142

5819315268

15231382

20317814310

1924283250

1992625468

13896250143

1281121392

193196399

1285920226

132170332

136145115194

1312472247

20317813310 13125420810

198133224149

19511316183

1282388864

12819554161

19511660212

128187223212

1943610154

13713280110

12108127138

143248139171

137226138156

64161102

124612915

128222363

1371651114

13014949136

1312472241

1371899831

139191422

1292215029

1692295011

193637518

137991187

1931963910

212235189114

1992625467

1923321017

198133224146

14011242159

160193163101

1992625469

2048155227

2048519111

751309612

13023750124

15598353

12811941211

1399190238

13265240102

198175112105

13037198243

193167187185

12816314221

1921612511

21924320029

15281474

1465724998

1412433192

137991186

136145115196

12911012552

1342172252

1371651113

1935419241

19317415526

1951165323

1282521920

141764518

1921612512

1295988180

1943610156

21924320097

133174162

1285920227

1371899717

2131311101

14120103211

13118844100

15014014093

198175112108

220245140196

16923524133

1285920228

1311149126

130206158140

15024458161

1935511240

139191426

134151255180

15524612163

13896250150

12819554163

150254212148

140127208238

138151055

12883122161

16923779210

192339066
1399190239

12813511149

1291051536

1282521922

2021416234

1935419242

169229509

1288415444

14320517212

16110624018

1296921096

1282202313

1288415445

1632211173

14011916484

1371899830

1296921097

151979225

14024760123

12822024728

192424322

13810012148

134342465

8825565220

1282202314

139191423

21012339103

128101953

14011242158

202389968

12918620579

129977412

1478330167

3592726

14124249129

128192101217

1647347242

200133215141

193157115251

156171052

19317467187

169229508

19882160239

13113032155

1936205

1281436130

2022493767

12918620576

2101258417

1312154572

13124619201

12822024729

140192249204

15598356

1311751710

129237161193
1311795070

169229507

206117379

12831114

169229503

19511660131

16410712712

1953716101

128101952

2001915935

208117131116

12910820210

14024760126

138238250155

1951165322

15281475

206117374

138238250157

1951166067

1944217123

192339067

1992625466

13825121477

19425421511

1282084199

122111591

147102224228

130188531

20620724834

137226138154

1292130117

13124619142

2001915934

143107111234

19411720214

1282202315

2052111834

220245140197

12918620578

155225271

217980144

19241135219

20620724835

2089463193

1412433162

140192249203

12924219197

19317415527

13124619141

17014011970

12813511152

1371651112

141212113179

12108127137

1282084197

19416725418

1951166098

1312154571

1412134201

130192157132

14215023813

133174163

1579244101

14324813955

12811213975

198133224145

192339069

13823266194

19262632

195130121204

1326823734

1521598227

15524547242

206117375

208117131115

160193163102

193157115250

1692295013

14215023812

193120127

193635871

1921233100

21319160194

13896250151

19262631

2041232855

1309270254

139191425

1309270253

130758784

1281146315

12811213980

1692295016

12910120194

2041784164

150254212147

202389969

14722910250

13113032154

13113032152

19511660132

1411612032

1281146363

19317467186

200132070

139191424

1692295012

1291051537

12910820211

1692295010

1511005910

141212113178

13223917225

122111592

2122014482

169229504

1292215078

200132069

12883122162

165918322

19261050

12813820745

204560138

128112139108

2052111832

2041232856

19313616656

2101258415

16410712713

198175112107

132170333

152149258

13083166200

13824699249

193106436

19262633

1581306253

2031781333

1942917813

14124249130

151979224

15598355

14011479231

1478330166

12924219196

14011210782

19314421130

15014014091

15231385

128232103201

723611274

13896250149

14210421241

1288126111

20317813311

1478330164

19416725419

2048519110 193136227163

13823266195

12883122179

1603657172

141149218208

128222364

19320521574

1304922141

1923390196

21012339168

2022493769

169229506

1309270252

195130121205

1647347244

13825121478

19313619125

1281115263

1465724999

1981285612

128208499

13013625421

1292130116

139191421

206117377

2121178151

13713280105

1935511241

12993229138

13265240100

1281115262

14210322

157181175249

129170214192

21012339102

1288415471

138151056

2089463194

19511660211

12823325211

1286192158

143225229238

131175179

130758783

1921971212

190227163142

14010917181

13083166199

1282084198

1944217124

1692295014

12811941210

13223917226

1284214241

1282275682

217980145

14324813956

1284214242

12831113

1281146364

13083166198

20317814328

19882160238

1281121393

1281115264

1923321016

12883122181

1311795072

14210321

12108127136

192424323

17014011969

15656250227

1371899718

19241135218

1282275681

1311149127

15524547241

1292421126

1581306254

1951166097

14210421245

141219252132

143215129117

15231384

129237161194

15524612164

1281146316

16923779211

1312472245

130192157131

129137253253

1603657173

15656250226

19425421512

1371651115

129137253252

13113032153

193106435

195371697

193637519

129747415

193167187187

19511316182

141764517

1284214243

20017202194

2041784163

13014949137

21924320093

2031781332

142150378

1282238112

13223917224

1632211172

128222365

147102224227

3592727

128187223211

1282202312

129747420

1526624448

2122014481

2169810230

1924283253

13824699250

1411612033

19313619126

193637521

156171051

134342464

1951165325

1292421129

1288415449

140127208239

13013625422

1931170135

1471023117

1312472242

134768192

193167187186

14011210780

13315592

1309270251

Figure 5.9: Circular network topology resulting from TFIDF organization with passive exploration.

1921233102

198133224146

16410712712

141764517

1286192156

19262632

128222364

19511316183

21012339103

138238250157

1282275682

12993229138

139191426

1282084198

15524612163

2001915934

1304922141

129137253253

1631172534

1647347242

19882160238

1312472242

128222365

193106435

15656250227

133174163

150254212147

1288415445

5819315268

1992625466

2131311102

12811213980

1371651114

1371651115

1285920228

156171052

14210421241

2101258417

130206158140

1296921096

151979224

20317813311

139191423

14011479231

2021416234

2041784164

193106436

1474621668

1282238112

128101953

1465724999

1951165323

1281146364

13118844100

1281115262

21012339168

12861921581281146316

12813511152

14011242159

198133224147

143225229238

19511660211

14722910250

7513096128825565219

1312472241

1412134201

13083166200

12924219197

138238250155

16923524133

21924320097

200133215141

12811941210

1399190238

12813511149

141219252132

2041232856

12816314221

19416725419

206117375

193136227163

1951165325

1944217123

141212113178

1288415449

12822024728

129170214192

20214116142

137991186

1281436130
8784153115

200132070

12813820745

1935419241

12108127138

1282202312

1692295014

1923390196

1311149127

192339069

1296921097

128232103203

12918620576

14011210780

1511005910

134342464 1647347244

1921233100

1992625469

12883122161

1309270254

1301928630

20017202194

19317415527

13125420810

2001915935

1478330166

21924320093

20317814310

2121178151

169229508

15598353

1311149126

193120127

1935511241

15024458161

20620724835

13265240102

12918620578

1291051536

1632211173

150254212148

12831114

14024760126

1282202314

19313616656

19262631

141212113179

1312154571

143107111234

13713280110

19425421512

1931963910

13083166199

1944217124

14011242158

204560138

128208499

137226138154

140127208238

138151055

2031781332

1285920227

1471023117

1284214241

1371651112

12811941211

169229503

14024760123

1632211172

1931170135

13113032155

1292421129

13823266195

1371899718

1292215078

193167187187

1282202313

1465724998

1342172252

122111592

15598356

1923321016

169229506

2022493767

2048519111

15524612164 19261050

1311795070

129747420

198175112108

190227163142

16923779210

21924320029

19511660132

1603657173

217980145

1923321017 14011916484

13023750124

19425421511

2031781333

13825121477

13124619141

12823325211

137991187

1292130117

2041784163

143248139171

220245140196

14210322

12883122162

1288415471

141149218208

14010917181

195130121205

12924219196

130758783

134768192

1924283250

202389968

147102224228

1579244101

200132069

193167187185

130192157131

19317415526

169229504

20317814328

1936205

128112139108

12910120193

12910820210

134768191

129237161194

1311751710

206117379

15014014091

212235189114

192424323

19262633

198175112105

2089463194

1921612512

13824699250

1281115263

1935511240

13124619142

21012339102

124612915

20317813310

1282084197

133174162

19882160239

140192249204

220245140197

2048519110

1282521922

1288126111

19511660212

198133224145

13013625422

1281115264

13896250150

13013625421

160193163102

19241135218

13896250143

14120103211

13125420811

12822024729

192424322

1312472245

14210421245

1411612032

1692295016

1526624448

13223917226

13713280105

19411720214

14320517212

1411612033

141149218209

136145115196

193635871

2122014482

8825565220

140192249203

2052111832

1692295013

13315592

1992625467

13223917224

141764518

129977412

122111591

16410712713

3592727

13810012148

140127208239

208117131115

12910120194

193167187186

1692295012

13083166198

13824699249

2131311101155225271

1478330167

130192157132

1311795072

193157115251

2041232855

157181175249

1284214243

198133224149

1312472247

169229507

1284214242

14011210782

19320521574

136145115194

15281474

192339066

14215023813

1292215029

130188531

13265240100

15014014093

19511660131

14215023812

139191424

1295988180

147102224227

1924283253

13037198243

134342465

1951166067

139191425

1992625468

1288415444

1291051537

128222363

193635870

20620724834

19416725418

13113032153

1282521921

151979225

12910820211

1281121392

2169810230

1281146363

1981285612

1371651113

193196399

1581306253

1371899831

193637518

1292421126

1478330164

1692295011

19314421130

1309270253

13113032154

13223917225

128187223212

15231382

198175112107
200133215142

129747416

17014011969

139191422

1371899830

14124249129

1399190239

2048155227

165918322

1942917813

195371697

13823266194

1281121393

142150378

208117131116

12883122181

13118844101

13896250151

1921612511

1282388864

2101258415

15598355

193637521

131175179

21010724950

1951165322

128192101217

2169810229

193157115250

19313619126

204560137

1282521920

1412433192

14210321

137226138156

1282275681

1935419242

2022493769

21319160194

2052111834

12911012551

14124249130

12108127137

14324813955

128101952

1295988179

13825121478

132170333

1312154572

1309270251

19511316182

723611274

1282202315

130758784

15524547241

12911012552

152149258

1412433162

15524547242

15656250226

1292130116

160193163101

129237161193

132170332

17014011970

217980144

13014949137

19313619125

2089463193

1603657172

1951166097

13113032152

206117377

138151056

129137253252

190227163141

19317467187

1285920226

1309270252

1951166098

12819554161

2122014481

1692295010

129747415

1371899717

156171051

202389969

1282084199

12108127136

128187223211

8784153114

1943610156

15231385

1921971212

15281475

19317467186

13896250149

192339067

19241135219

1943610154

14324813954

16923779211

139191421

14324813956

15231384

134151255180

12883122179

206117374

3592726

1281146315

64161102

169229509

193637519

1953716101

13014949136

Figure 5.10: Circular network topology resulting from TFIDF organization with active exploration.

68 CHAPTER 5. EVALUATION

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9 10

B
a
n
d
w
i
d
t
h

(
M
B
)

Max TTL

opt1
random
tfidf

passive naive
active naive

Figure 5.11: Aggregate bandwidth usage versus max TTL including naive with active exploration.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

R
e
c
a
l
l

(
p
e
r
c
e
n
t
a
g
e
)

Max TTL

opt1
random
tfidf

passive naive
active naive

Figure 5.12: Query recall versus max TTL including naive with active exploration.

5.6. DOWNLOAD TESTS 69

Benefits Limitations

OPT1 Good at low TTLs Not realistic (requires oracle)

Random Perfectly balanced Not realistic (requires oracle)

Naive Low bandwidth Must perform active exploration

TFIDF Passive exploration, implicit incentive model Bandwidth cost of file stores

Table 5.1: Overview of benefits and limitations of our four organization strategies.

5.6 Download Tests

Finally, we turn briefly to download tests using our client. Our primary objective in measuring
download speeds was to demonstrate that the tracker used by a BitTorrent network is not necessary
to facilitate high speed downloads involving more than 2 participants (that is, a swarm versus a
one-to-one download).

To test download speeds, we selected three initial seeds and placed the same 75 megabyte file on
each of them. We then selected roughly 25 other machines scattered across PlanetLab to participate
in the file download. We ran the file download on the same set of machines for both Kudzu and
BitTorrent. For Kudzu, the three initial seeds started a Kudzu network and the 25 downloaders
then connected to the network, issued a query matching the test file, and began downloading as
soon as the first response was received. For BitTorrent, we set up a tracker file using a high-capacity
public tracker hosted by The Pirate Bay and had the three seeds first connect through the torrent
file, followed by the 25 downloaders. We used the mainline Linux BitTorrent client, version 4.4.0.

In both cases, the file was divided into 512 KB chunks, each of which was further divided into
16 KB pieces. We show the cumulative distribution function of the download completion across the
entire swarm in Figure 5.13.

A similar trend is evident for both networks; one of the downloaders finishes very quickly, followed
by a gap of several minutes after which most of the downloaders complete within a short span. The
three seeders were located at the same site as one of the downloaders; this explains why one of the
downloaders completes much more rapidly than the others in both networks.

The bulk of the downloaders complete roughly 25% faster under BitTorrent than under Kudzu.
However, this is easily attributable to both parameter tuning and the chunk selection algorithm. In
our Kudzu client, we simply set parameters (message timeouts, chunk update intervals, and the like)
to reasonable values and did not experiment, since absolute performance was not a primary concern
once we were within a reasonable distance of BitTorrent. More importantly, however, is BitTorrent’s
mechanism for selecting chunks to download. BitTorrent peers download random chunks for the first
few rounds, then switch to favoring chunks downloaded by the fewest number of peers in the swarm.
This has the effect of disseminating poorly replicated chunks first, thereby allowing more peers
to upload. At present, Kudzu simply chooses randomly for the duration of the download. We
observed that Kudzu was hampered by this during the download – chunks fully uploaded by the

70 CHAPTER 5. EVALUATION

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180

P
e
r
e
n
t

c
o
m
p
l
e
t
e

(
%
)

Time (sec)

Kudzu
BitTorrent

Figure 5.13: Download completion CDFs for Kudzu and BitTorrent.

initial seeds would quickly spread to the rest of the swarm (resulting in burst download speeds
across all downloaders), but then download speeds would quickly slow down as the chunks available
to download from the non-seeds were exhausted. We anticipate a sizable speed increase once we add
BitTorrent’s chunk selection to Kudzu; at present, we simply have not implemented the necessary
bookkeeping. Another aspect of BitTorrent that we have not yet implemented is dynamic connection
management. BitTorrent keeps roughly 4 peer connections open per download and periodically tries
to improve download speeds by switching to connections providing higher average speeds. Kudzu,
at present, simply connects to everyone in the swarm. This results in many more connections (some
of which may not actually facilitate a significant amount of transferred data), which may be slowing
the network down relative to BitTorrent.

Another measure we were interested in was the amount of overhead imposed by Kudzu to facil-
itate the download relative to the amount of actual data transferred between peers. This overhead
includes exchanging chunks available to upload, pings to other members of the swarm, and exchanges
of peer lists within the swarm. We tallied the total bandwidth used during the download tests and
found that the binary download blocks themselves comprised over 98% of the total bandwidth used
during the test. This means that the total overhead of the network comprised less than 2% of its
bandwidth. This result suggests that the bandwidth overhead of conducting swarm downloads in a
purely P2P fashion (that is, without a tracker) does not present a significant scalability issue.

5.7. SUMMARY 71

5.7 Summary

Our experimentation with Kudzu led us to several main conclusions, both about Kudzu itself and
about general decentralized P2P systems of its kind. We summarize these findings as follows:

• The max TTL setting is highly important to the aggregate bandwidth consumption of the
network on its host network (presumably the Internet). Moreover, setting a high max TTL or
uncapping TTL entirely is not necessary to achieve good query recall.

• Maintaining a balanced network is extremely important to maintaining query recall in the
absence of a more sophisticated organizational strategy. An unbalanced network often leads
to a high network diameter and disconnected components, both which can seriously hamper
query recall.

• Intelligent peer selection via TFIDF was not as beneficial as we thought relative to a purely
random organization. However, clusters formed by TFIDF seem to offset the harm caused by
random imbalances in the network.

• BitTorrent-style centralized trackers are not needed to achieve high performance swarm-based
downloads; a fully decentralized P2P system such as Kudzu can achieve similar performance
without incurring high overhead.

Chapter 6

Conclusion

6.1 Future Work

While Kudzu is a fully functional P2P file transfer system in its own right, there are some important
aspects of P2P systems that we did not consider in Kudzu’s design. We discuss some of these issues
here and how they may be incorporated into future versions of Kudzu. We are also continuing to
explore more powerful network organization strategies than the ones evaluated thus far, some of
which we detail here.

6.1.1 Organization with Machine Learning Classifiers

Recall from Section 3.3.5 that we discussed an approach to organizing the network using machine
learning techniques to learn how to separate good neighbors from bad ones. We believe that an
approach such as this has potential in real-world systems based both on simulation data from [5].
However, implementing such a heavyweight organizational approach in a real setting presents several
challenges:

• Gathering training data requires a reliable way to label a set of training peers. The obvious
way to do this (by first interacting with potential peers) is problematic because it means that
the cost of bootstrapping the organization process is very high, and during the process the
node will see no organizational benefits. Furthermore, in real P2P systems many users join
the network, issue a few queries, and then quickly disconnect – for these users, a long-term
organizational strategy is likely to have little benefit.

• Training SVM classifiers and performing feature selection are quite computationally expensive.
Training the classifier is likely to take a significant amount of time; as such, one issue is choosing
when to retrain the classifier as new data is received from interactions on the network. One
example approach that could be used is to retrain the classifier overnight, but this encounters
the the problem of short peer longevity discussed above.

72

6.1. FUTURE WORK 73

However, even with these problems we believe this is an approach worth investigating. The
example binary classification task we presented was a fairly simple problem formulation; there is no
reason why we need to classify peers only as good or bad, nor do our features need to be restricted
to the binary {in file store, not in file store}. Instead, more sophisticated non-binary features
could be used; in fact, machine learning techniques are often combined with measures such as TF-
IDF (e.g., [10]) in order to improve classification performance. Once the implementation and peer
longevity issues inherent to an approach of this type are resolved, there are many types of classifiers
that could be employed in intelligently organizing the structure of the network.

6.1.2 Incentive Model and Adversaries

Real-world P2P can suffer both from peers that consume resources without contributing to the
network (leeches) and from malicious peers that operate outside of the established protocol either for
personal benefit or to simply disrupt the network (adversarial peers). Considering selfish peers and
adversaries was beyond the scope of our work thus far, and we simply assumed in design and testing
that nodes always acted according to the rules laid down. We noted earlier that conducting network
exploration to find suitable neighbors provides an incentive to remain online; at present, however,
nodes could simply refuse to upload file blocks or drop all incoming queries without being penalized.
We are investigating ways to add an effective incentive model to Kudzu without imposing any
centralization – some incentive models (e.g., [22]) rely on trusted third parties to manage incentives,
which adds potential weaknesses to the system. An incentive model generally deals with most types
of adversarial issues as well, since peers that do not abide by the established rules and conventions
will find themselves either limited or blacklisted completely by other peers in the network.

6.1.3 Testing Environment

One of our goals was to evaluate Kudzu under testing conditions as realistic as possible. While we
feel that our testing methodology was an improvement on most testing procedures that have been
used before, there are several ways in which it could be improved:

• Our largest tests spanned roughly 500-550 nodes, which was as large a subset of PlanetLab
as we could harness at once. Unfortunately, current BitTorrent and Gnutella networks often
comprise tens of thousands of nodes simultaneously, which obviously causes more stress on the
network and more rigorously tests a network’s scalability. PlanetLab is the largest synthetic
testbed for testing P2P applications easily available to researchers today, however, so scaling
our evaluations beyond this scale at the present time would most likely require harnessing
actual user machines.

• The Kudzu networks we evaluated were effectively static – though peer connections could
change as a result of our organization policies, with only a few exceptions due to PlanetLab’s
unreliability, nodes that participated in each test participated in the entire test. In live P2P
networks, nodes are constantly joining and leaving the network. This high level of node churn
presents potential difficultly in effective network organization because the target ‘optimal’

74 CHAPTER 6. CONCLUSION

organization is in a constant state of flux. Furthermore, from an evaluation perspective,
allowing significant node churn complicates deciding what constitutes a possible match in the
system – keeping the peers in the network fixed allowed us to easily precompute all possible
matches to decide how close to optimal the network was, but this is an unrealistic target in
a real setting. Finally, the dataset that we use does not contain the information needed to
replicate the actual churn that occurred (peer arrival and departure times). However, deciding
how to resolve these problems and incorporate node churn into tests would provide added
credibility to our evaluation results.

6.1.4 New Datasets

The Goh dataset [12] we used for our experiments was useful, but we encountered several problems
stemming from our data. One was the overall lack of data per user – while the number of users was
quite adequate for our purposes, most of those users showed little activity. Given our limited number
of simulation machines (and thus simulated users), a dataset with more per-user data could improve
our experiments, possibly captured over a longer period or tracing particular users across multiple
sessions. A related issue is the lack of uptime data; that is, data per user indicating when the user
arrived on the network and disconnected. This type of information is probably quite difficult to
obtain in an automated fashion, but would nevertheless facilitate the addition of node churn to our
tests. This would also allow us to simulate more users by replacing a disconnected user with a newly
connected user on a single PlanetLab machine, thereby simulating multiple users per machine over
the course of the entire simulation. To these ends, we are investigating other datasets for use in
future evaluations.

6.1.5 Anonymity and Privacy

One final aspect of P2P systems we have not considered is the degree to which the activity of nodes is
shielded from other nodes (who they may be interacting with). The present version of Kudzu includes
the requester address in every query; thus, every query that is made effectively exposes the behavior
of the user to the entire network. This is generally an undesirable property. The original version
of Gnutella attempted to correct for this by forwarding query results back through the network
along the path the query arrived rather than making a direct connection back to the requester.
This approach meant that nodes did not know whose query they were viewing or responding to.
While generally functional, this approach not only imposed a much greater bandwidth overhead
but created problems when nodes somewhere along the intermediate route disconnected from the
network, breaking the chain back to the query requester. For these reasons, this approach was
ultimately scrapped and changed back to the simpler direct connection method that we employ in
Kudzu. However, privacy and anonymity are still important concerns in a P2P network that we
may investigate for future use in Kudzu.

6.2. SUMMARY OF CONTRIBUTIONS 75

6.2 Summary of Contributions

This thesis presented Kudzu, a fully decentralized P2P file transfer system that employs intelligent
network organization to reduce bandwidth costs and improve query recall. Kudzu provides both
the flooding, keyword-search querying behaviors of Gnutella and the fast swarm-based downloads
of BitTorrent by overlaying download swarms on top of the main network through which queries
propagate. We leverage the correlation between node’s files and queries to choose peers that are
good candidates for future interaction and demonstrate that this approach has potential to greatly
improve decentralized P2P networks by lowering the percentage of the network through which queries
need to propagate.

In addition, we presented a distributed test harness for running live tests of P2P systems such
as Kudzu on real user data. This test framework replays user data on a real network in order to
evaluate the performance of the system under real-world settings. We employed this framework
to run tests of Kudzu on PlanetLab, and our experiments demonstrated the efficacy of both our
network organization and download behaviors. Our tests also show that our system imposes only a
modest real-world bandwidth cost under realistic usage patterns.

We now briefly revisit the goals that we set for Kudzu in Section 3.1. The network is completely
decentralized and relies on nothing to function correctly besides the nodes themselves, as we intended.
Our network organization allows us to limit the maximum query TTL to small values, and our tests
on PlanetLab running large networks suggest that Kudzu is highly scalable. The system provides
both full-featured keyword searches and high performance download performance, as we desired.
Finally, we have demonstrated the real-world viability of our system by implementing and evaluating
it under realistic network and usage conditions. Our experiences with Kudzu have demonstrated
the importance of network organization (even on a rudimentary level), as well as the feasibility of
fully decentralized P2P systems to accomplish the same functions as less-decentralized systems in
use today. Given these findings, we anticipate that fully decentralized systems will see increasingly
widespread use in the future.

Bibliography

[1] Adar, E., and Huberman, B. Free riding on gnutella. First Monday 5 (2000).

[2] Ante, S. E. Inside napster. Business Week (August 2000).

[3] Bangeman, E. Bittorrent use soars as mpaa fights on against p2p sites.
http://arstechnica.com/news.ars/post/

20080417-bittorrent-use-soars-as-mpaa-fights-on-against-p2p-sites.html,
retrieved 22 April 2009.

[4] Beverly, R. An architecture for scalable p2p networks that respects user incentives.
Submission to Symposium on Networked Systems Design and Implementation.

[5] Beverly, R., and Afergan, M. Machine learning for efficient neighbor selection in
unstructured p2p networks. In SysML ’07: Proceedings of the 2nd USENIX workshop on
tackling computer systems problems with machine learning techniques (2007), pp. 1–6.

[6] Carchiolo, V., Malgeri, M., Mangioni, G., and Nicosia, V. Social behaviours applied
to p2p systems: An efficient algorithm for resources organisation. In 2nd International
Workshop on Collaborative P2P Information Systems (2006).

[7] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., and Shenker, S. Making
gnutella-like p2p systems scalable. In SIGCOMM ’03: Proceedings of the 2003 conference on
applications, technologies, architectures, and protocols for computer communications (2003),
pp. 407–418.

[8] Cohen, B. Incentives build robustness in bittorrent.
http://www.bittorrent.org/bittorrentecon.pdf, retrieved 22 April 2009, 2003.

[9] Deutsch, P. Rfc 1950 - zlib compressed data format specification.
http://tools.ietf.org/html/rfc1950, retrieved 1 May 2009.

[10] Forman, G. Bns feature scaling: An improved representation over tf-idf for svm text
classification. In Conference on Information and Knowledge Management (2008).

[11] Frankel, J., and Pepper, T. Gnutella protocol specification v0.4.
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf, retrieved 22 April
2009.

76

BIBLIOGRAPHY 77

[12] Goh, S. T., Kalnis, P., Bakiras, S., and Tan, K.-L. Real datasets for file-sharing
peer-to-peer systems. In DASFAA (2005), pp. 201–213.

[13] Google Code contributors. Protocol buffer benchmarks.
http://code.google.com/p/thrift-protobuf-compare/wiki/Benchmarking, retrieved 20
April 2009.

[14] Google Inc. Encoding - protocol buffers.
http://code.google.com/apis/protocolbuffers/docs/encoding.html, retrieved 1 May
2009.

[15] Google Inc. Protocol buffers. http://code.google.com/apis/protocolbuffers/,
retrieved 22 April 2009.

[16] Liang, J., Kumar, R., and Ross, K. Understanding kazaa.
http://cis.poly.edu/~ross/papers/UnderstandingKaZaA.pdf, retrieved 22 April 2009,
2004.

[17] Locher, T., Moor, P., Schmid, S., and Wattenhofer, R. Free riding in bittorrent is
cheap. In Proceedings of HotNets V (2006).

[18] Loewenstern, A. Bittorrent dht protocol (draft).
http://www.bittorrent.org/beps/bep_0005.html, retrieved 22 April 2009.

[19] Loo, B. T., Huebsch, R., Stoica, I., and Hellerstein, J. M. The case for a hybrid p2p
search infrastructure. In Proceedings of the 3rd International Workshop on Peer-to-Peer
Systems (2004).

[20] MPAA. Swedish authorities sink pirate bay.
http://www.mpaa.org/press_releases/2006_05_31.pdf, retrieved 22 April 2009.

[21] Peterson, L., Bavier, A., Fiuczynski, M., and Muir, S. Experiences building
planetlab. In Proceedings of the 7th symposium on operating systems design and
implementation (2006), pp. 351–366.

[22] Peterson, R. S., and Sirer, E. G. Antfarm: Efficient content distribution with managed
swarms. In USENIX Symposium on Networked Systems Design and Implementation (2009).

[23] Pouwelse, J., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., Epema, D.,

Reinders, M., van Steen, M., and Sips, H. Tribler: A social-based peer-to-peer system.
Concurrency and Computation: Practice and Experience 20 (February 2008), 127–138.

[24] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. A scalable
content-addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communications (2001),
pp. 161–172.

78 BIBLIOGRAPHY

[25] Ritter, J. Why gnutella can’t scale. no, really.
http://www.darkridge.com/~jpr5/doc/gnutella.html, retrieved 1 May 2009, February
2001.

[26] Rohrs, C. Keyword matching.
http://wiki.limewire.org/index.php?title=Keyword_Matching, retrieved 17 April 2009.

[27] Rowstron, A., and Druschel, P. Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In Lecture Notes in Computer Science (2001),
pp. 329–350.

[28] Salton, G., and Buckley, C. Term-weighting approaches in automatic text retrieval. In
Information Processing and Management (1988), pp. 513–523.

[29] Sandvine Inc. 2008 analysis of traffic demographics in north-american broadband networks.
http://www.sandvine.com/general/documents/Traffic_Demographics_NA_Broadband_

Networks.pdf, retrieved 22 April 2009, June 2008.

[30] Singla, A., and Rohrs, C. Ultrapeers: Another step towards gnutella scalability.
http://www.limewire.com/developer/Ultrapeers.html, retrieved 1 May 2009.

[31] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. Chord:
A scalable peer-to-peer lookup service for internet applications. In IEEE/ACM Transactions
on Networking (2001), pp. 149–160.

[32] Sun Microsystems, Inc. Remote method invocation.
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp, retrieved 22
April 2009.

[33] Zennstrom, N., Friis, J., and Tallinn, J. The fasttrack protocol.
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/

PROTOCOL?view=markup&content-type=text\%2Fvnd.viewcvs-markup&revision=HEAD,
retrieved 15 December 2008.

[34] Zhu, Y., Yang, X., and Hu, Y. Making search efficient on gnutella-like p2p systems. In
IPDPS ’05: Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium (2005).

