<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept 23</td>
<td>45</td>
<td>Tides</td>
<td>10 Fluid dynamics. Total derivative</td>
<td>12 Eq. of motion (continuity)</td>
</tr>
<tr>
<td>Sept 10</td>
<td>Eq. of motion (continuity)</td>
<td>17 Equ. of motion (pressure grad)</td>
<td>19 Eq. of motion (Coriolis)</td>
<td></td>
</tr>
<tr>
<td>Sept 24</td>
<td>Eq. of motion (coriolis)</td>
<td>24 Inertial Circles and geostrophy</td>
<td>26 Geostrophy continued</td>
<td></td>
</tr>
<tr>
<td>Sept/Oct 1</td>
<td>Geostrophy: Margule's eqn Barotropic/clinic Hydrostatic balance</td>
<td>3 Friction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 8</td>
<td>Friction cont. Ekman theory</td>
<td>10 Ekman Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 22</td>
<td>Sverdrup theory Midterm Exam</td>
<td>24 Sverdrup cont.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct/Nov 29</td>
<td>Stream function and Vorticity Vorticity Cont</td>
<td>31 Western boundary currents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 5</td>
<td>Boundary currents cont. Equation of State and Stability</td>
<td>7 Stability and Potential energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 12</td>
<td>Oceanography history History</td>
<td>14 Cartography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 19</td>
<td>Energy, black-body radiation Energy balance of ocean and atmosphere Local energy budget. 8pm meeting Water masses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 26</td>
<td>Thermohaline circulation Thanksgiving Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 3</td>
<td>Mixing diagrams Modelling and Ar/N2 fluxes</td>
<td>5 No class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 10</td>
<td>No Class Return to Global radiation balance and Milankovitch Reading period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 16</td>
<td>Exam Period</td>
<td>20 Final Exam: Sat., December 21, 2:00pm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KN = Knauss, OC = Ocean Circulation, WT = Waves Tides & Shallow Water Processes, PP = Pond and Pickard, DX = Duxbury, Hartmann = photocopied readings in solution binder (Gedanken Lab)

Tides: KN 234-243, WT 50-72, PP 253-264

KN 82-84, 66-69, OC: 101-102 PP Chap. 4

KN 80-82,84-94, OC 12-13, 98-102

Inertial circles: KN 108-109, OC 44-46
Geostrophy: KN 110-118, OC 46-49, 54-56
KN 116-119, 95-96, OC 49-53 Friction: KN 71-73, 96-99,104 OC 4.2.3
Ekman: KN 122-128, OC 42-44, 64-68
Sverdrup: KN 128-130 OC 90-92, PP 119-124
Stream fn: PP 132-133, Vorticity: OC sec. 4.2.1, KN: 105-107 Boundary currents: KN 131-133, OC sec 4.2.2
EOS: KN: 24-30, 37-38, DX Chap 4
Stability: KN 34-36 OC: 26-28
History: DX Prologue
Energy: KN: 39-44, 59-64 OC:14-15,190,
Energy Balance & Budget KN 191-201
Water masses and Thermohaline circ: KN 170-179, OC 206-223, 240-247, Wunsch article (handout)
Mixing: OC 225-229, Modelling: OC 102-106, Battle article (handout)
Global balance: Hartmann 18-39,
Milankovitch forcing: Hartmann 300-312

Final Exam: Sat., December 21, 2:00pm