Traversing a graph: BFS and DFS

(CLRS 22.2, 22.3)

The most fundamental graph problem is traversing the graph.

• There are two standard (and simple) ways of traversing all vertices/edges in a graph in a systematic way: BFS and DFS.

• Most fundamental algorithms on graphs (e.g. finding cycles, connected components) are applications of graph traversal.

• Like finding the way out of a maze (maze = graph). Need to be careful to not get stuck in the graph, so we need to mark vertices that we’ve encountered; and we need to make sure we don’t skip anything.

• Basic idea: over the course of the traversal a vertex progresses from undiscovered, to discovered, to completely-discovered:
 – undiscovered: initially (WHITE)
 – discovered: after it’s encountered, but before it’s completely explored (GRAY)
 – completely explored: the vertex after we visited all its incident edges (BLACK)

• We start with a single vertex and evaluate its outgoing edges:
 – If an edge goes to an undiscovered vertex, we mark it as discovered and add it to the list of discovered vertices.
 – If an edge goes to a completely explored vertex, we ignore it (we’ve already been there)
 – If an edge goes to an already discovered vertex, we ignore it (it’s on the list).

• Analysis: Each edge is visited once (for directed graphs), or twice (undirected graphs — once when exploring each endpoint) ⇒ O(|V| + |E|)

• Depending on how we store the list of discovered vertices we get BFS or DFS:
 – queue: explore oldest vertex first. The exploration propagates in layers form the starting vertex.
 – stack: explore newest vertex first. The exploration goes along a path, and backs up only when new unexplored vertices are not available.
Breadth-first search (BFS)

- We use a queue Q to hold all gray vertices—vertices we have seen but are still not done with.

- We remember from which vertex a given vertex v is colored gray – i.e. the node that discovered v first; this is called parent[v].

- We also maintain $d[v]$, the length of the path from s to v. Initially $d[s] = 0$.

```
BFS(s)
    color[s] = gray
    d[s] = 0
    ENQUEUE(Q, s)
    WHILE Q not empty DO
        DEQUEUE(Q, u)
        FOR each $v \in \text{adj}[u]$ DO
            IF color[$v$] = white THEN
                color[$v$] = gray
                d[$v$] = d[$u$] + 1
                parent[$v$] = u //($u,v$) is a tree-edge
                ENQUEUE(Q, v)
            //ELSE $v$ is not white, ($u,v$) is non-tree edge
                color[u] = black
```

- Example (for directed graph):

```
BFS(G)
    FOR each vertex $u \in V$ DO
        IF color[$u$] = white THEN BFS($u$)
```

- If graph is not connected we start the traversal at all nodes until the entire graph is explored.
Properties of BFS

- During BFS(v) each edge in G is classified as:
 - tree edge: an edge leading to an unmarked vertex
 - non-tree edge: an edge leading to a marked vertex.

- Each vertex, except the source vertex s, has a parent; these edges (v, parent[v]) define a tree, called the BFS-tree.

Lemma: On a directed graph, BFS(s) reaches all vertices reachable from s. On an undirected graph, BFS(s) visits all vertices in the connected component (CC) of s, and the BFS-tree obtained is a spanning tree of CC(s).

Proof sketch: Assume by contradiction that there is a vertex v in CC(u) that is not reached by BFS(u). Since u, v are in same CC, there must exist a path v₀ = u, v₁, v₂, ..., vₖ, v connecting u to v. Let vᵢ be the last vertex on this path that is reached by BFS(u) (vᵢ could be u). When exploring vᵢ, BFS must have explored edge (vᵢ, vᵢ₊₁),..., leading eventually to v. Contradiction.

Lemma: BFS(s) runs in \(O(|V_c| + |E_c|)\), where \(V_c, E_c\) are the number of vertices and edges in CC(s). When run on the entire graph, BFS(G) runs in \(O(|V| + |E|)\) time. Put differently, BFS runs in linear time in the size of the graph.

Proof: It explores every vertex once. Once a vertex is marked, it’s not explored again. It traverses each edge twice. Overall, \(O(|V| + |E|)\).

Lemma: Let x be a vertex reached in BFS(s). Its distance \(d[x]\) represents the the shortest path from s to x in G.

Proof idea: All vertices v which are one edge away from s are discovered when exploring s and are set with \(d[v] = 1\). Similarly all vertices that are one edge away from vertices at distance 1, are explored and their distance set to \(d = 2\). And so on.

Lemma: For undirected graphs, for any non-tree edge \((x, y)\) in BFS(v), the level of x and y differ by at most one.

Proof idea: Observe that, at any point in time, the vertices in the queue have distances that differ by at most 1. Let’s say x comes out first from the queue; at this time y must be already marked (because otherwise \((x, y)\) would be a tree edge). Furthermore y has to be in the queue, because, if it wasn’t, it means it was already deleted from the queue and we assumed x was first. So y has to be in the queue, and we have \(|d(y) - d(x)| \leq 1\) by above observation.
Depth-first search (DFS)

- Use stack instead of queue to hold discovered vertices:
 - We go “as deep as possible”, go back until we find first unexplored adjacent vertex
- Useful to compute “start time” and “finish time” of vertex u
 - *Start time* $d[u]$: time when a vertex is first visited.
 - *Finish time* $f[u]$: time when all adjacent vertices of u have been visited.
- We can write DFS iteratively using the same algorithm as for BFS but with a STACK instead of a QUEUE, or, we can write a recursive DFS procedure

```plaintext
DFS(u)
    color[u] = gray
    d[u] = time
    time = time + 1
    FOR each $v \in adj[u]$ DO
        IF color[v] = white THEN
            parent[v] = u
            DFS(v)
        END IF
    END FOR
    color[u] = black
    f[u] = time
    time = time + 1
```

- Example:

![Graph](image)

DFS Properties:

- DFS(u) reaches all vertices reachable from u. On undirected graphs, DFS(u) visits all vertices in CC(u), and the DFS-tree obtained is a spanning tree of G.
- Analysis: DFS(s) runs in $O(|V_c| + |E_c|)$, where V_c, E_c are the number of vertices and edges in CC(s) (reachable from s, for directed graphs). When run on the entire graph, DFS(G) runs in $O(|V| + |E|)$ time. Put differently, DFS runs in linear time in the size of the graph.
- As with BFS $(v, parent[v])$ forms a tree, the *DFS-tree*