Dynamic Programming: 0-1 Knapsack

• Problem: Given \(n \) items, with item \(i \) being worth \(v_i \) and having weight \(w_i \) pounds, fill a knapsack of capacity \(W \) pounds with maximal value.

• Perhaps a greedy strategy of picking the item with the biggest value-per-pound might work? Here is a counter-example showing that this does not work:

\[
\begin{array}{c|c|c|c|c}
\text{Items in value per pound order} & \text{Optimal solution for knapsack of size 50} & \text{Greedy solution for knapsack of size 50} \\
\hline
\$60 & 10 & 20 & 30 & \$120 & 20 & 20 & 30 & = \$220 & = \$160 \\
\hline
\end{array}
\]

Note: In the FRACTIONAL-KNAPSACK PROBLEM we can take \(\frac{2}{3} \) of \$120 object and get \$240 solution.

• Now we’ll show that 0−1 KNAPSACK PROBLEM can be solved in time \(O(n \cdot W) \) using dynamic-programming.

• Often the hardest part is coming up with the recursive formulation. Let us denote by \(\text{optknapsack}(k, w) \) the maximal value obtainable when filling a knapsack of capacity \(w \) using items among items 1 through \(k \).

• To solve our problem we need to compute \(\text{optknapsack}(n, W) \).

• The idea is to consider each item, one at a time. Let’s take item \(k \): either it’s part of the optimal solution, or not. We need to compute both options, and chose the best one.

\[
\text{optknapsack}(k, w) \\
\quad \text{IF} \ wight[k] \leq w \ \text{THEN} \\
\quad \quad \text{with} = \text{value}[k] + \text{optknapsack}(k-1, w - \text{weight}[k]) \\
\quad \quad \text{ELSE} \\
\quad \quad \quad \text{with} = 0 \\
\quad \quad \text{END IF} \\
\quad \text{without} = \text{optknapsack}(k-1, w) \\
\quad \text{RETURN} \ \max\{\text{with}, \text{without}\} \\
\text{END Knapsack}
\]
• Analysis: Let $T(n, W)$ be the running time of $\text{optknapsack}(k, w)$.

\[T(n, W) = T(n - 1, W) + T(n - 1, W - w[n]) + \Theta(1) \]

We’ll look at the worst case where $w[i] = 1$ for all $1 \leq i \leq n$. If $w[i] = 1$ then it is clear that $T(n, W) > 2T(n - 1, W - 1)$. This recurrence, which runs for $\min(n, W)$ steps, gives that $T(n, W) = \Omega(2^{\min(n, W)})$.

• We now show how to improve the exponential running time with dynamic programming: We create a table T of size $[1..n][1..W]$ in which to store our results of prior runs. Entry $T[i][w]$ will store the result of $\text{optknapsack}(i, w)$.

First we initialize all entries in the table as 0 (in this problem we are looking for max values when all item values are positive, so 0 is safe).

We modify the algorithm to check this table before launching into computing the solution.

\begin{verbatim}
optknapsack(k,w)
 IF table[k][w] != 0 THEN
 RETURN table[k][w]
 IF w[k] <= w THEN
 with = v[k] + optknapsack(k-1, w-w[k])
 ELSE
 with = 0
 without = optknapsack(k-1,w)
 table[k][w] = max{with, without}
 RETURN max{with, without}
END
\end{verbatim}

• Effectively, the table will prevent a subproblem $\text{optknapsack}(k,w)$ to be computed more than once.

• Analysis: This will run in $O(n \cdot W)$ time as we fill each entry in the table at most once, and there are nW spaces in the table.