1 Practice problems

These are intended to help you study. You do not need to turn them in.

1. What are the minimum and maximum number of elements in a heap of height h? Note: the height of a heap is the number of edges on the longest root-to-leaf path.

2. Where in a min-heap might the largest element reside, assuming that all elements are distinct?

3. Is an array that is in sorted order a min-heap?

4. What is the effect of calling MIN-HEAPIFY(A, i) for $i > \text{size}[A]/2$?

5. What is the running time of QUICKSORT when all elements of array A have the same value?

6. Briefly sketch why the running time of QUICKSORT is $\Theta(n^2)$ when the array A contains distinct elements and is sorted in decreasing order.

7. Argue that for any constant $0 < \alpha \leq 1/2$, the probability is approximately $1 - 2\alpha$ that on a random input array, PARTITION produces a split more balanced that $(1 - \alpha)$-to-α.

8. Professors Dewey, Cheatham, and Howe have proposed the following “elegant” sorting algorithm:

 Stuoge-Sort(A, i, j)
 \[\text{if } A[i] > A[j] \]
 \[\text{then exchange } A[i] \leftrightarrow A[j] \]
 \[\text{if } i + 1 \geq j \]
 \[\text{then return} \]
 \[k \leftarrow \lfloor (j - i + 1)/3 \rfloor \]
 Stuoge-Sort($A, i, j - k$)
 Stuoge-Sort($A, i + k, j$)
 Stuoge-Sort($A, i, j - k$)

 a. Argue that Stuoge-Sort($A, 1, \text{length}[A]$) correctly sorts the input array $A[1..n]$, where $n = \text{length}[A]$.
 b. Give a recurrence for the worst-case running time of Stooge-Sort and a tight asymptotic (Θ-notation) bound on the worst-case running time.
 c. Compare the worst-case running time of Stooge-Sort with that of insertion sort, merge sort, heapsort, sock sort, and quicksort. Do the professors deserve praise?
9. Which of the following sorting algorithms are stable: insertion sort, merge sort, quicksort? Give a simple scheme that makes any sorting algorithm stable. How much additional time and space does your scheme entail?

10. Suppose that you have a “black-box” worst-case linear-time median subroutine. Give a simple, linear-time algorithm that solves the selection problem SELECT(i) for an arbitrary i.

11. Illustrate the operation of BUCKET-SORT on the array

\[A = [.79, .13, .16, .64, .39, .20, .89, .53, .71, .42] \]

2 Homework

1. Give an \(O(n \log k) \)-time algorithm to merge \(k \) sorted lists into one sorted list, where \(n \) is the total number of elements in all the input lists.

2. Given a set of \(n \) numbers, we wish to find the \(i \) largest in sorted order using a comparison-based algorithm. Find the algorithm that implements each of the following methods with the best asymptotic worst-case running time, and analyze the running times of the algorithms on terms of \(n \) and \(i \).

 (a) Sort the numbers, and list the \(i \) largest.

 (b) Build a max-priority queue from the numbers, and call EXTRACT-MAX \(i \) times.

 (c) Use a SELECT algorithm to find the \(i \)th largest number, partition around that number, and sort the \(i \) largest numbers.

 We can obviously find a local minimum in \(O(n) \) time by scanning through \(A \). Describe an \(O(\log n) \) algorithm for finding a local minimum.

4. Describe an \(O(n) \) algorithm that, given a set \(S \) of \(n \) distinct numbers and a positive integer \(k \leq n \), determines the \(k \) numbers in \(S \) that are closest (in value) to the median of \(S \).
5. Let A be a list of n (not necessarily distinct) integers. Describe an $O(n)$-algorithm to test whether any item occurs more than $\lceil n/2 \rceil$ times in A. Your algorithm should use $O(1)$ additional space.

6. Give an $O(n \lg k)$ algorithm to find the $k - 1$ elements in a set that partition the set into (approx.) k equal-sized sets A_1, A_2, \ldots, A_k such that all elements in A_i are smaller than all elements in A_{i+1}. Assume k is a power of 2.

7. Show how to sort n integers in the range 1 to n^2 in $O(n)$ time.