Practice Problems: Mathematical Foundations
(Induction, Summations, Recurrences)

1. Order the following expressions by their asymptotic growth and justify your answer.

\[2^n, n!, (\log n)!, n^3, e^n, 2^{\log_2 n}, n \log n, 2^{2^n}, n^{\log \log n}. \]

2. Show that the following function are in growth order:

\[\log \log n, \log n, \sqrt{n}, n, n \log \log n, n \log n, n \log^2 n, n^2, n^3, 2^n. \]

3. Prove by induction that \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \).

4. Solve the recurrence:

\[T(n) = \begin{cases}
1 & \text{if } n = 1 \\
T(n - 1) + n(n - 1) & \text{if } n \geq 2
\end{cases} \]

Hint: use \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \).

5. Show that \(\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} \) for any integer \(n \geq 1 \).

6. Solve the recurrence:

\[T(n) = \begin{cases}
1 & \text{if } n = 1 \\
T(n - 1) + n(n - 1)(n+1) & \text{if } n \geq 2
\end{cases} \]

Hint: use \(\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} \).

7. Give asymptotic upper and lower bounds for \(T(n) \) in each of the following recurrences. Assume \(T(n) \) is constant for sufficiently small \(n \). Make your bounds as tight as possible, and justify your answers.

(a) \(T(n) = T(n - 1) + \lg n. \)

(b) \(T(n) = \sqrt{n} T(\sqrt{n}) + n. \)

(c) \(T(n) = 4 T(n/2) + n^2 \sqrt{n}. \)
8. Show using induction (the substitution method) that the recurrence

\[T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T\left(\frac{n}{2}\right) + b \log n & \text{if } n \geq 2
\end{cases} \]

where \(b \) is a positive constant has solution \(T(n) = O(n) \).

Hint: Show that there exist positive constants \(a \) and \(c \) such that \(T(n) \leq an - b \log n - c \).

9. Show using induction (the substitution method) that the recurrence

\[T(n) = \begin{cases}
\sqrt{n} \cdot T(\sqrt{n}) + an & \text{if } n > 2 \\
1 & \text{otherwise}
\end{cases} \]

(where \(a \) is a positive constant) has solution \(T(n) = O(n \log \log n) \).

10. Show using induction (the substitution method) that the recurrence

\[T(n) = \begin{cases}
2 \cdot T(n/2) + n \log n & \text{if } n > 2 \\
1 & \text{otherwise}
\end{cases} \]

has solution \(T(n) = O(n \log^2 n) \).

11. Show using induction (the substitution method) that the recurrence

\[T(n) = \begin{cases}
T(\sqrt{n}) + \log \log n & \text{if } n > 4 \\
1 & \text{otherwise}
\end{cases} \]

has solution \(T(n) = O((\log \log n)^2) \).

12. Show using induction (the substitution method) that the recurrence

\[T(n) = \begin{cases}
T(\sqrt{n}) + (\log \log n)^2 & \text{if } n > 4 \\
1 & \text{otherwise}
\end{cases} \]

has solution \(T(n) = O((\log \log n)^3) \).