Practice problems: Amortized analysis

1. In this problem we consider a *monotone priority queue* with operations Init, Delete, and DeleteMin. Consider the following implementation using a boolean array A:

   ```
   Init(n)
      for i=1 to n do
         A[i]=true
      end
   end

   Delete(i)
      A[i]=false
   end

   DeleteMin()
      i=1
      While A[i]=false do
         i=i+1
      end
      if i=<|A| then
         Delete(i)
         return i
      else
         return 0
      end
   end
   ```

 (a) Analyze the running time of each of the procedures.

 (b) Describe a simple modification to DeleteMin such that it has amortized running time $O(1)$ (while maintaining the running times of Init and Delete). Explicitly give the potential function used in your analysis.

 (c) Describe a different implementation such that both Delete and DeleteMin have worst-case running time $O(1)$.

2. (CPS130 final spring 2001) An *ordered stack* S is a stack where the elements appear in increasing order. It supports the following operations:

 - **Init(S):** Create an empty ordered stack.
- **Pop(\(S\)):** Delete and return the top element from the ordered stack.
- **Push(\(S, x\)):** Insert \(x\) at top of the ordered stack and reestablish the increasing order by repeatedly removing the element immediately below \(x\) until \(x\) is the largest element on the stack.
- **Destroy(\(S\)):** Delete all elements on the ordered stack.

Example: The following shows an example of an ordered stack and the same stack after performing a Push(\(S, 2\)) operation (the order is reestablished by removing 7, 5, and 3)

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>-5</td>
<td>-5</td>
</tr>
<tr>
<td>-6</td>
<td>-6</td>
</tr>
</tbody>
</table>

Like a normal stack we implement an ordered stack as a double linked list (maintaining a pointer to the top element).

(a) What is the worst-case running time of each of the operations Init, Pop, Push, and Destroy?

(b) Argue that the amortized running time of all operations is \(O(1)\).

3. We have previously seen that \(n\) increment operations on an initially zero \(k\)-bit counter can be performed in \(O(n)\) time, that is, the amortized time for one increment operation is \(O(1)\). In this problem we will consider both incrementing and decrementing a binary counter.

(a) Describe a scenario where \(n\) increment/decrement operations performed on an initially zero \(k\)-bit counter take \(O(nk)\) time.

In order to deal with decrement operations more efficiently we modify the counter representation such that each 'bit' can take the values 0,1 and -1 (instead of just 0 and 1). We store the counter in an array \(A[0..k-1]\) \((A[i] \in \{-1, 0, 1\})\) and assume \(m\) to be the leftmost non-zero 'bit':

\[
m = \max_{0 \leq i < k} \{i | A[i] \neq 0\}.
\]

We define \(m = -1\) if all the 'bits' of the counter are zero. The value stored in the counter is

\[
val(A,m) = \sum_{i=0}^{m} A[i]2^i.
\]
Note that \(\text{val}(A, m) = 0 \) iff \(m = -1 \).

(b) Give an example showing that the representation of a number other than 0 is not unique.

Consider the following procedures for incrementing and decrementing the counter. For simplicity we assume that the counter has infinite size \(k = \infty \), that is we assume that we always have enough 'bits':

\begin{verbatim}
INCREMENT(A,m)
 if m=-1 then
 A[0] = 1
 m = 0
 else
 i = 0
 while A[i] = 1 do
 A[i] = 0
 i = i + 1
 if A[i] = 0 and m = i then
 m = -1
 else
 m = max{m,i}
 end

DECREMENT(A,m)
 if m=-1 then
 A[0] = -1
 m = 0
 else
 i = 0
 while A[i] = -1 do
 A[i] = 0
 i = i + 1
 if A[i] = 0 and m = i then
 m = -1
 else
 m = max{m,i}
 end
\end{verbatim}

(c) Assume that \(n \) increment and decrement operation are performed on an initially zero counter. Show that the amortized cost of an operation is \(O(1) \).