Examining Initial Data with the Beetle-Burko Radiation Scalar: Analytical Examples

Thomas Baumgarte
Bowdoin College

Lior Burko
Bates College

Chris Beetle
Florida Atlantic University
Overview

• Motivation: ambiguities in construction of initial data

• The Beetle-Burko radiation scalar
 ○ Definition in terms of Weyl scalars
 ○ Construction from numerical relativity data

• Examples
 ○ Linear waves
 ○ Rotating black holes

• Discussion
Initial Data

• Decompose Einstein’s equations for metric

\[ds^2 = g_{ab}dx^a dx^b = -\alpha^2 dt^2 + \gamma_{ij}(dx^i + \beta^i dt)(dx^j + \beta^j dt) \]

into

○ evolution equations

\[\partial_t \gamma_{ij} = -2\alpha K_{ij} + 2D_{(i}\beta_{j)} \]

\[\partial_t K_{ij} = ... \]

○ constraint equations

\[R + K^2 - K_{ij}K^{ij} = -16\pi \rho \quad \text{(Hamiltonian constraint)} \]

\[D_i(K^{ij} - \gamma^{ij} K) = 8\pi j^j \quad \text{(Momentum constraint)} \]

• For initial data solve only constraint equations

○ four equations for twelve unknowns

○ Choice of decomposition and freely specifiable variables affects physical content of solution

⇒ “junk” gravitational radiation

• How can we measure gravitational wave content?
Deomposition of Weyl tensor

- Introduce complex null tetrad; e.g. from orthonormal basis \mathbf{e}_t, \mathbf{e}_x, \mathbf{e}_y, and \mathbf{e}_z

$$\mathbf{l} = \frac{1}{\sqrt{2}}(\mathbf{e}_t - \mathbf{e}_x), \quad \mathbf{k} = \frac{1}{\sqrt{2}}(\mathbf{e}_t + \mathbf{e}_x), \quad \mathbf{m} = \frac{1}{\sqrt{2}}(\mathbf{e}_y - i\mathbf{e}_z), \quad \bar{\mathbf{m}} = \frac{1}{\sqrt{2}}(\mathbf{e}_y + i\mathbf{e}_z)$$

- Satisfy $l_\alpha k^\alpha = -1$ and $m_\alpha \bar{m}^\alpha = 1$.
- There are many such frames, related by null rotations, spin boosts and exchanges.

- Construct Weyl scalars ψ_0, \ldots, ψ_4

$$\psi_0 \equiv W_{\alpha\beta\gamma\delta} k^\alpha m^\beta \bar{k}^\gamma \bar{m}^\delta$$

and similar for others.

- In a transverse frame $\psi_1 = \psi_3 = 0$ and, in wave zone, can interpret:

- ψ_0 radiation along \mathbf{l} ("ingoing")
- ψ_2 "Coulomb" components
- ψ_4 radiation along \mathbf{k} ("outgoing")

- To extract gravitational radiation, would like to find ψ_0 and ψ_4 in transverse frame.
The Beetle-Burko radiation scalar

- Problem: transverse frames not unique
 - transversality condition $\psi_1 = \psi_3 = 0$ invariant under spin boosts
 - but ψ_0 and ψ_4 are not invariant
- But: Product $\psi_0\psi_4$ invariant under spin boosts
 \Rightarrow define BB radiation scalar as
 $$\xi \equiv (\psi_0\psi_4)^T$$

[Beetle & Burko (2002)]

- Remaining problem: in general there are three distinct classes of transverse frames
 \Rightarrow need to identify quasi-Kinnersley frame:
 - frame in which $\xi \to 0$ in limit of spacetime becoming algebraically special
[Nerozzi et.al. (2005)]

- In generic spacetimes can interpret ξ in terms of radiation in radiation zones, and can extend definition into strong-field regions
 \Rightarrow may become useful tool for extraction of gravitational radiation
 [Beetle et.al. (2005); Nerozzi et.al. (2005)]

\Rightarrow can use ξ to examine initial data sets
Computing the BB radiation scalar

- Compute electric and magnetic parts of Weyl tensor
 \[E_{ij} = \text{traceless part of } R_{ij} + KK_{ij} - K_iK_j^\kappa - 4\pi S_{ij} \]
 \[B_{ij} = \text{symmetric part of } -\epsilon_i^{kl}\nabla_kK_{lj} \]

- Find complex tensor \(C^i{}_j = E^i{}_j - iB^i{}_j \)

- Compute scalar curvature invariants \(I \) and \(J \)
 \[I = \frac{1}{2} C^i{}_j C^j{}_i \]
 \[J = -\frac{1}{6} C^i{}_j C^j{}_l C^l{}_i \]

- Compute speciality index \(S \)
 \[S = 27 \frac{J^2}{I^3} \]

- Compute BB radiation scalar
 \[\xi = \frac{1}{4} I \left(2 - W(S)^{1/3} - W(S)^{-1/3} \right) \]
 where \(W(S) = 2S - 1 + 2\sqrt{S(S - 1)} \)

- Identify quasi-Kinnersley branch in asymptotic regime
 [Beetle et.al. (2005)]
Linear Einstein-Rosen waves I

- Cylindrical wave with amplitude B and width a

$$ds^2 = -e^{-2\psi}dt^2 + e^{-2\psi}d\rho^2 + e^{2\psi}dz^2 + \rho^2 e^{-2\psi}d\phi^2$$

where

$$\psi(t, \rho) = B\left(\left((a + it)^2 + \rho^2\right)^{-1/2} + \left((a - it)^2 + \rho^2\right)^{-1/2}\right)$$

- identify α, $\beta^i = 0$ and γ_{ij}

- time symmetric about $t = 0$
 - $K_{ij} = 0$ at $t = 0$
 - greatly simplifies analysis:

$$E_{ij} = R_{ij}, \quad B_{ij} = 0$$
• S insensitive to wave amplitude B
• ξ scales with B^2
• Similar for Teukolsky waves
Rotating black holes

• Kerr black hole:
 ◦ Petrov type D \implies algebraically special $\implies S = 1 \implies \xi = 0$

• Bowen-York data:
 ◦ assume conformal flatness $\bar{\gamma}_{ij} = \eta_{ij}$ and maximal slicing $K = 0$
 ◦ analytical solution to momentum constraint
 $$\bar{A}_{r\phi} = \frac{3 \sin^2 \theta}{r^2} L$$
 [Bowen & York (1980)]
 ◦ only need to solve Hamiltonian constraint
 $$\bar{\nabla}^2 \psi = -\frac{1}{8} \psi^{-7} \bar{A}_{ij} \bar{A}^{ij}$$
 ◦ usually solve numerically, but can construct analytical solution up to order L^2
 (where deviations from Kerr first appear)
 [Gleiser et.al. (1998)]
 ◦ Construct $\gamma_{ij} = \psi^4 \bar{\eta}_{ij}$ and $K_{ij} = \psi^{-2} \bar{A}_{ij}$
 \implies Compute ξ
Rotating black holes: Bowen-York solution

- Wave amplitude scales with L^2 [Gleiser et.al. (1998)]
- ξ scales with L^4 as expected
Discussion

- In generic spacetimes \(\xi = (\psi_0 \psi_4)^T \) provides measure of radiation in radiation zones; can extend interpretation into strong-field regions.

- Can use \(\xi \) to diagnose “gravitational wave content” of initial data sets:
 - \(\xi \) scales with square of wave amplitude
 - picks up radiation content of Bowen-York data

- Potentially useful diagnostic for comparison of initial data sets obtained with different decompositions and/or different freely specifiable variables:
 - may provide guidance for construction of astrophysically relevant initial data
Limitations

- For algebraically special spacetimes have $\mathcal{S} = 1$ and
 \[\xi = 0 \]
 \[\implies \text{can have spacetimes containing radiation, but } \xi = 0 \text{ (e.g. plane waves)} \]

- Can interpret ξ in terms of radiation only in radiation zones
 \[\implies \text{can have spacetimes without radiation, but } \xi \neq 0 \text{ (e.g. cosmological solutions)} \]

- No straightforward interpretation of $\xi = (\psi_0 \psi_4)^T$
 - Neither proportional to wave amplitude $(|\psi_0 + \psi_4|^2)$ nor wave power $(|\psi_0|^2 + |\psi_4|^2)$