Regular and Nonregular Languages

Chapter 8

Regular and Non-Regular Languages

Are all finite languages regular?

Regular and Non-Regular Languages

Are all finite languages regular?
Are all infinite languages non-regular?

Regular and Non-Regular Languages

Are all finite languages regular?
Are all infinite languages non-regular?
What must be true about an FSM that accepts an infinite language or a regular expression that generates an infinite language?

Regular and Non-Regular Languages

The only way to accept/generate an infinite language with a finite description is to use:

- cycles (in FSM), or
- Kleene star (in regular expressions)

This forces some kind of simple repetitive cycle within the strings.

Example 1:
NDFSM with accepting start state and single self loop labeled a

Example 2:
ab*a generates aba, abba, abbba, abbbbba, etc.

How Long a String Can Be Accepted?

What is the longest string that a 5-state FSM can accept?
How about with no loops?

Exploiting the Repetitive Property

If an FSM with n states accepts any string of length $\geq n$, how many strings does it accept?
$L=\mathrm{bab} * \mathrm{ab}$

$$
\frac{\mathrm{b} a \mathrm{a}}{x} \frac{\mathrm{~b}}{y} \frac{\mathrm{~b} \cdot \mathrm{~b} \mathrm{~b} a \mathrm{~b}}{z}
$$

$x y^{*} z$ must be in L.
So L includes: baab, babab, babbab, babbbbbbbbbbbab...

Theorem - Long Strings

Theorem: Let $M=(K, \Sigma, \delta, s, A)$ be any DFSM. If M accepts any string of length $|K|$ or greater, then that string will force M to visit some state more than once (thus traversing at least one loop).

Theorem - Long Strings

Theorem: Let $M=(K, \Sigma, \delta, s, A)$ be any DFSM. If M accepts any string of length $|K|$ or greater, then that string will force M to visit some state more than once (thus traversing at least one loop).

Proof: M must start in one of its states. Each time it reads an input character, it visits some state. So, in processing a string of length n, M creates a total of $n+1$ state visits. If $n+1>|K|$, then, by the pigeonhole principle, some state must get more than one visit. So, if $n \geq|K|$, then M must visit at least one state more than once.

The Pumping Theorem for Regular Languages

If L is regular, then every long string in L is "pumpable."
To be precise, if L is regular, then
$\exists k \geq 1$
(\forall strings $w \in L$, where $|w| \geq k$

$$
\begin{aligned}
&(\exists x, y, z(w=x y z \wedge \\
&|x y| \leq k \wedge \\
& y \neq \varepsilon \wedge \\
&\left.\left.\left.\forall q \geq 0\left(x y^{q} z \text { is in } L\right)\right)\right)\right) .
\end{aligned}
$$

The Pumping Theorem for Regular Languages

If L is regular, then every long string in L is "pumpable."
To be precise, if L is regular, then

$$
\begin{aligned}
& \exists k \geq 1, \\
& \left\{\forall w \in \Sigma^{*},\right. \\
& {[(w \in \mathrm{~L} \wedge|w| \geq k)=>} \\
& \exists x, y, z \in \Sigma^{*}, \\
& \quad(w=x y z \wedge \\
& |x y| \leq k \wedge \\
& y \neq \varepsilon \wedge \\
& \left.\left.\forall q \geq 0\left(x y^{q} z \text { is in } L\right)\right]\right\} .
\end{aligned}
$$

Showing a Language is Not Regular

If the following is true, then L is not regular:
$\forall k \geq 1$,
$\left\{\exists w \in \Sigma^{*}\right.$,

$$
\begin{aligned}
& {[(w \in \mathrm{~L} \wedge|w| \geq k) \wedge} \\
& \forall x, y, z \in \Sigma^{*}, \\
& (w=x y z \wedge \\
& |x y| \leq k \wedge \\
& y \neq \varepsilon) \wedge \\
& \left.\left.\exists q \geq 0\left(x y^{q} z \text { is NOT in } L\right)\right]\right\} .
\end{aligned}
$$

No matter what k is (no matter how many states are in the DFSM), we can find a string in L with length at least k that is not "pumpable."

Example: $\left\{a^{n} b^{n}: n \geq 0\right\}$ is not Regular

Choose w to be $a^{k} b^{k}$ (Given k, we get to choose any w.)

We show that there is no x, y, z with the required properties:

$$
\begin{aligned}
& \mathrm{w}=\mathrm{xyz} \\
& |x y| \leq k, \\
& y \neq \varepsilon, \\
& \forall q \geq 0\left(x y^{q} z \text { is in } L\right) .
\end{aligned}
$$

Since $|x y| \leq k, y$ must be in region 1 . So $y=a^{p}$ for some $p \geq 1$.
Let $q=2$, producing:

$$
\mathrm{a}^{k+p_{\mathrm{b}} k}
$$

which $\notin L$, since it has more a's than b's.

Using the Pumping Theorem

If L is regular, then every "long" string in L is pumpable.
To show that L is not regular, we find one that isn't.
To use the Pumping Theorem to show that a language L is not regular, we must:

1. Choose a string w where $|w| \geq k$. Since we do not know what k is, we must state w in terms of k.
2. Divide the possibilities for y into a set of possible cases that need to be considered.
3. For each such case where $|x y| \leq k$ and $y \neq \varepsilon$: choose a value for q such that $x y^{q} z$ is not in L.

Bal $=\left\{w \in\{),(\}^{*}\right.$:the parens are balanced $\}$

PalEven $=\left\{w w^{R}: w \in\{a, b\}^{*}\right\}$

$\left\{a^{n} b^{m}: n>m\right\}$

Using the Pumping Theorem Effectively

- To choose w:
- Choose a w that is in the part of L that makes it not regular, e.g. not aaaaaa for palindrome.
- Choose a w that is only barely in L, i.e. pumping part of it will produce a string not in L, e.g. $a^{\mathrm{k}+1} \mathrm{~b}^{\mathrm{k}}$ for $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}, \mathrm{n}$ $>\mathrm{m}$
- Choose a w with as homogeneous as possible an initial region of length at least k, e.g. $a^{\mathrm{k}} \mathrm{b}^{\mathrm{k}}$ for $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}, \mathrm{n}>=$ 0 and Balanced Parens.

This can mean a string longer than k.

- To choose q :
- Try letting q be either 0 or 2 .
- If that doesn't work, analyze L to see if there is some other specific value that will work.

Using the Closure Properties

The two most useful ones are closure under:

- Intersection
- Complement

Using the Closure Properties

$L=\left\{w \in\{a, b\}^{*}: \#_{\mathrm{a}}(w)=\#_{b}(w)\right\}$
If L were regular, then:

$$
L^{\prime}=L \cap
$$

would also be regular. But it isn't.

Using the Closure Properties

$L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: \#_{\mathrm{a}}(w) \neq \#_{\mathrm{b}}(w)\right\}$
If L were regular, then the complement of L would also be regular. Is it?

